精英家教网 > 高中数学 > 题目详情
12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=b2,过椭圆C的上顶点A的直线l:y=kx+b分别交圆O、椭圆C于不同的两点P、Q,设$\overrightarrow{AP}$=λ$\overrightarrow{PQ}$.
(1)若点P(-3,0),点Q(-4,-1),求椭圆C的方程;
(2)若λ=3,求椭圆C的离心率e的取值范围.

分析 (1)由P(-3,0)在圆O上,可得b=3.再由点Q在椭圆C上求得a.则椭圆方程可求;
(2)分别联立直线方程与圆、椭圆的方程,求出P、Q的横坐标,由$\overrightarrow{AP}$=λ$\overrightarrow{PQ}$,λ=3,得$\overrightarrow{AP}=\frac{3}{4}\overrightarrow{AQ}$,代入点的坐标可得${k}^{2}=\frac{3{a}^{2}-4{b}^{2}}{{a}^{2}}=4{e}^{2}-1$.再由k2>0求得e的取值范围.

解答 解:(1)由P(-3,0)在圆O:x2+y2=b2上,可得b=3.
又点Q在椭圆C上,得$\frac{(-4)^{2}}{{a}^{2}}+\frac{(-1)^{2}}{{3}^{2}}=1$,解得a2=18.
∴椭圆C的方程为$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{9}=1$;
(2)联立$\left\{\begin{array}{l}{y=kx+b}\\{{x}^{2}+{y}^{2}={b}^{2}}\end{array}\right.$,得x=0或xP=$-\frac{2kb}{1+{k}^{2}}$,
联立$\left\{\begin{array}{l}{y=kx+b}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,得x=0或xQ=$-\frac{2kb{a}^{2}}{{a}^{2}{k}^{2}+{b}^{2}}$.
∵$\overrightarrow{AP}$=λ$\overrightarrow{PQ}$,λ=3,∴$\overrightarrow{AP}=\frac{3}{4}\overrightarrow{AQ}$,
∴$\frac{2kb{a}^{2}}{{k}^{2}{a}^{2}+{b}^{2}}•\frac{3}{4}=\frac{2kb}{1+{k}^{2}}$,即${k}^{2}=\frac{3{a}^{2}-4{b}^{2}}{{a}^{2}}=4{e}^{2}-1$.
∵k2>0,∴4e2>1,得e$>\frac{1}{2}$,或$e<-\frac{1}{2}$.
又0<e<1,∴$\frac{1}{2}<e<1$.

点评 本题考查椭圆的简单性质,考查椭圆标准方程的求法,考查平面向量在求解圆锥曲线问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点为F,点D(2,y0)在抛物线C上,且|DF|=3,直线y=x-1与抛物线C交于A,B两点,O为坐标原点.
(1)求抛物线C的方程;
(2)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中真命题的个数是(  )
①“a>b”是“a2>b2”的充要条件;
②“a>b”是“a3>b3”的充要条件;
③“a>b”是“|a|>|b|”的充分条件;
④“a>b”是“ac2≤bc2”的必要条件.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《数学统综》有如下记载:“有凹线,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和大于最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数f(x)=x2-2x+2,在$[\frac{1}{3},{m^2}-m+2]$上任取三个不同的点(a,f(a)),(b,f(b)),(c,f(c)),均存在以f(a),f(b),f(c)为三边长的三角形,则实数m的取值范围为(  )
A.[0,1]B.$[0,\frac{{\sqrt{2}}}{2})$C.$(0,\frac{{\sqrt{2}}}{2}]$D.$[\frac{{\sqrt{2}}}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在区间[-3,3]中随机取一个实数k,则事件“直线y=kx与圆(x-2)2+y2=1相交”发生的概率为(  )
A.$\frac{\sqrt{3}}{9}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若方程f(x)+f(2-x)=t恰有4个不同的实数根,则实数t的取值范围是($\frac{7}{4}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=|2x•log${\;}_{\frac{1}{2}}$x|-1的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xoy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).
(1)若C1与C2只有一个公共点,求实数m的值;
(2)若θ=$\frac{π}{3}$与C1交于点A(异于极点),θ=$\frac{5π}{6}({ρ∈R})$与C1交于点B(异于极点),与C2交于点C,若△ABC的面积为3$\sqrt{3}$,求实数m(m<0)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=x-$\frac{a-1}{x}$-alnx,a∈R.
(1)当a=1时,求曲线y=f(x)在点$(\frac{1}{2},\frac{1}{2}+ln2)$处的切线方程;
(2)当a>1时,若x=1是函数f(x)的极大值点,求a的取值范围.

查看答案和解析>>

同步练习册答案