精英家教网 > 高中数学 > 题目详情
1.在正四棱柱ABCD-A1B1C1D1中,AB=2,E为AA1的中点,F为BB1的中点,面D1EB与底面ABCD所成角为arccos$\frac{\sqrt{6}}{3}$.
(1)求面D1FC与底面ABCD所成角的大小;
(2)求点B1到面D1EB的距离.

分析 (1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由面D1EB与底面ABCD所成角为arccos$\frac{\sqrt{6}}{3}$,求出DD1的长,由此能求出面D1FC与底面ABCD所成角的平面角的大小.
(2)求出面D1EB的法向量和$\overrightarrow{B{B}_{1}}$=(0,0,$\sqrt{2}$),由此利用向量法能求出点B1到面D1EB的距离.

解答 解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设DD1=2t(t>0),则B(2,2,0),E(2,t,0),D1(0,0,2t),F(2,2,t),C(0,2,0),
$\overrightarrow{{D}_{1}E}$=(2,t,-2t),$\overrightarrow{{D}_{1}B}$=(2,2,-2t),
D1EB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{D}_{1}E}=2x+ty-2tz=0}\\{\overrightarrow{n}•\overrightarrow{{D}_{1}B}=2x+2y-2tz=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,$\frac{1}{t}$),
又平面ABCD的法向量$\overrightarrow{m}$=(0,0,1),
∵面D1EB与底面ABCD所成角为arccos$\frac{\sqrt{6}}{3}$,
∴|cos<$\overrightarrow{n},\overrightarrow{m}$>|=|$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}•\overrightarrow{m}|}$|=$\frac{\frac{1}{t}}{\sqrt{1+\frac{1}{{t}^{2}}}}$=$\frac{\sqrt{6}}{3}$,解得t=$\frac{\sqrt{2}}{2}$,或t=-$\frac{\sqrt{2}}{2}$(舍),
∴$\overrightarrow{{D}_{1}F}$=(2,2,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{{D}_{1}C}$=(0,2,-$\sqrt{2}$),
设平面D1FC的法向量为$\overrightarrow{p}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{{D}_{1}F}=2a+2b-\frac{\sqrt{2}}{2}c=0}\\{\overrightarrow{p}•\overrightarrow{{D}_{1}C}=2b-\sqrt{2}c=0}\end{array}\right.$,取c=$\sqrt{2}$,得$\overrightarrow{p}$=(-$\frac{1}{2}$,1,$\sqrt{2}$),
设面D1FC与底面ABCD所成角的平面角为θ,
cosθ=|cos<$\overrightarrow{p},\overrightarrow{m}$>|=|$\frac{\overrightarrow{p}•\overrightarrow{m}}{|\overrightarrow{p}|•|\overrightarrow{m}|}$|=$\frac{\sqrt{2}}{\sqrt{\frac{1}{4}+1+2}}$=$\frac{2\sqrt{26}}{13}$.
∴面D1FC与底面ABCD所成角的大小为$\frac{2\sqrt{26}}{13}$.
(2)∵面D1EB的法向量$\overrightarrow{n}$=(1,0,$\sqrt{2}$),$\overrightarrow{B{B}_{1}}$=(0,0,$\sqrt{2}$),
∴点B1到面D1EB的距离:
d=$\frac{|\overrightarrow{n}•\overrightarrow{B{B}_{1}}|}{|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.

点评 本题考查二面角的大小的求法,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.化简下列各式:
(1)$\frac{1}{\root{3}{x(\root{5}{{x}^{2}})^{2}}}$;
(2)4$\root{4}{x}$•(-3$\root{4}{x}$)•$\frac{1}{\root{3}{y}}$÷$\frac{-6\root{3}{{y}^{2}}}{\sqrt{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数y=5-x+$\sqrt{3x-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆O的半径为2,△ABC是其内接三角形,BC=3,则${\overrightarrow{AC}}^{2}$-${\overrightarrow{AB}}^{2}$的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知3x+4y-3=0与直线6x+my+2=0平行,那么它们之间的距离为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集为R,集合A={x|x≤1},B={x|x≥-2},则(CRA)∪B=(  )
A.AB.BC.RD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知在四边形ABCD中,∠ADC=105°,AD=3,AB=7,∠BDA=60°,∠BCD=120°,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=2sin(2x+$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)用五点作图法作出f(x)在一个周期的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.集合A={(x,y)|mx2+mx-y+2=0},集合B={(x,y)|x-y+1=0},
(1)A∩B=∅,求实数m的取值范围;
(2)A∩B为单元素集合,求实数m的值.

查看答案和解析>>

同步练习册答案