精英家教网 > 高中数学 > 题目详情
请阅读以下材料,然后解决问题:
①设椭圆的长半轴长为m短半轴长为b,则椭圆的面积为πab
②我们把由半椭圆C1
y2
b2
+
x2
c2
=1 (x≤0)与半椭圆C2
x2
a2
+
y2
b2
=1 (x≥0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0
如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角形,则上述“果圆”的面积为:
3
+
7
4
π
3
+
7
4
π
分析:根据△F0F1F2是边长为1的等边三角形,得半椭圆C1的半焦距为
1
2
且半椭圆C2的半焦距c=
3
2
,由此结合椭圆基本量的平方关系,建立关系式算出a=
7
2
,b=1,c=
3
2
,结合椭圆的面积公式加以计算,即得该“果圆”的面积.
解答:解:根据题意,得
∵△F0F1F2是边长为1的等边三角形,
∴半椭圆C1
y2
b2
+
x2
c2
=1 (x≤0)中,半焦距c1=
1
2
,即
b2-c2
=
1
2
…①
且半椭圆C2
x2
a2
+
y2
b2
=1 (x≥0)中,c=
a2-b2
=
3
2
…②
联解①②,得a=
7
2
,b=1,c=
3
2

根据椭圆的面积公式,得半椭圆C1的面积为S1=
1
2
πbc=
3
4
π
半椭圆C2的面积为S2=
1
2
πab=
7
4
π
∴“果圆”的面积为S1+S2=
3
+
7
4
π

故答案为:
3
+
7
4
π
点评:本题给出椭圆的面积公共,在已知“果圆”的定义下求它的面积,着重考查了椭圆的定义与标准方程和组合图形面积的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2008-2009学年广东省佛山一中高二(上)期末数学试卷(理科)(解析版) 题型:填空题

请阅读以下材料,然后解决问题:
①设椭圆的长半轴长为m短半轴长为b,则椭圆的面积为πab
②我们把由半椭圆C1+=1 (x≤0)与半椭圆C2+=1 (x≥0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0
如图,设点F,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,若△FF1F2是边长为1的等边三角形,则上述“果圆”的面积为:   

查看答案和解析>>

科目:高中数学 来源:广东省汕头金山中学09-10学年高二下学期期中考试(理) 题型:填空题

 请阅读以下材料,然后解决问题:

①设椭圆的长半轴长为a,短半轴长为b,则椭圆的面积为ab

②我们把由半椭圆C1+=1 (x≤0)与半椭圆C2+=1 (x≥0)合成的曲线称作“果圆”,其中=+a>0,b>c>0

如右上图,设点F0F1F2是相应椭圆的焦点,A1A2B1B2是“果圆”与xy轴的交点,若△F0 F1 F2是边长为1的等边三角形,则上述“果圆”的面积为       

 

查看答案和解析>>

同步练习册答案