精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角ABC对应的边分别是abc,已知cos 2A3cos(BC)1.

(1)求角A的大小;

(2)△ABC的面积S5b5,求sin Bsin C的值.

【答案】12

【解析】试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得.

试题解析:(1)由cos 2A3cos(BC)1

2cos2A3cos A20

(2cos A1)(cos A2)0

解得cos Acos A=-2(舍去)

因为0<A<π,所以A.

2)由Sbcsin Abc×bc5,得bc20,又b5,知c4.

由余弦定理得a2b2c22bccos A25162021,故a.

从而由正弦定理得sin B sin Csin A×sin Asin2A×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某民调机构为了了解民众是否支持英国脱离欧盟,随机抽调了100名民众,他们的年龄的频数及支持英国脱离欧盟的人数分布如下表:

年龄段

18-24岁

25-49岁

50-64岁

65岁及以上

频数

35

20

25

20

支持脱欧的人数

10

10

15

15

(Ⅰ)由以上统计数据填下面列联表,并判断是否有99%的把握认为以50岁胃分界点对是否支持脱离欧盟的态度有差异;

年龄低于50岁的人数

年龄不低于50岁的人数

合计

支持“脱欧”人数

不支持“脱欧”人数

合计

附:

(Ⅱ)若采用分层抽样的方式从18-64岁且支持英国脱离欧盟的民众中选出7人,再从这7人中随机选出2人,求这2人至少有1人年龄在18-24岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数如果满足:对任意存在常数都有成立,则称上的有界函数,其中称为函数的上界,已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由

(2)若函数上是以4为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益与投入(单位:万元)满足,乙城市收益与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元)。

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中, 的参数方程为为参数),在以坐标原点为极点, 轴正半轴为极轴的极坐标系中, 的极坐标方程.

)说明是哪种曲线,并将的方程化为普通方程;

有两个公共点,顶点的极坐标,求线段的长及定点两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥PABCD的底面ABCD是矩形,PA⊥底面ABCD,点EF分别是棱PCPD的中点,则

①棱ABPD所在直线垂直;

②平面PBC与平面ABCD垂直;

③△PCD的面积大于△PAB的面积;

④直线AE与直线BF是异面直线.

以上结论正确的是________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=5x+x-2,g(x)=log5x+x-2的零点分别为x1,x2,则x1+x2的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线ACBD交于点O,点EF分别在ADCD上,AECFEFBD于点H.将△DEF沿EF折到△DEF的位置.

(1)证明:ACHD′;

(2)若AB=5,AC=6,AEOD′=2,求五棱锥DABCFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:

①骑自行车者比骑摩托车者早出发3 h,晚到1 h

②骑自行车者是变速运动,骑摩托车者是匀速运动;

③骑摩托车者在出发1.5 h后追上了骑自行车者;

④骑摩托车者在出发1.5 h后与骑自行车者速度一样.

其中,正确信息的序号是________

查看答案和解析>>

同步练习册答案