精英家教网 > 高中数学 > 题目详情
设函数f(x)=
log
1-mx
x-1
a
为奇函数,g(x)=f(x)+loga(x-1)(ax+1)( a>1,且m≠1).
(1)求m值;
(2)求g(x)的定义域;
(3)若g(x)在[-
5
2
,-
3
2
]
上恒正,求a的取值范围.
分析:(1)根据函数f(x)为奇函数可知f(x)=-f(-x),把f(x)的解析式代入即可求得m.
(2)由(1)可得f(x)的解析式,进而根据g(x)=f(x)+loga(x-1)(ax+1)可得g(x)的解析式,根据对数的真数需大于0,进而可得x的范围.
(3)根据g(x)在[-
5
2
,-
3
2
]
上恒成立,对于g(x)的解析式只需(x+1)(ax+1)>1,进而根据x的范围求得a的范围.
解答:解:(1)f(x)是奇函数,f(x)=-f(-x)=-loga
1+mx
-x-1
=loga
-x-1
1+mx

1-mx
x-1
=
-x-1
1+mx
x2-1=(mx)2-1

∴(m2-1)x2=0,又m≠1
∴m=-1;
(2)由(1)f(x)=loga
x+1
x-1
,g(x)=loga
x+1
x-1
+loga[(x-1)(ax+1)]

x必须满足
(x-1)(ax+)>0
(x+1)(x-1)>0

x<-1或x>1(a>1,-
1
a
>-1)

∴g(x)的定义域为{x:x<-1或x>1}
(3)∵a>1,g(x)在[-
5
2
,-
3
2
]上恒正,
即(x+1)(ax+1)>1
ax+1<
1
x+1
ax<-
x
x+1
∴a>-
1
x+1

x∈[-
5
2
,-
3
2
]
-
1
x+1
≤-
1
(-
3
2
)+1
=2∴a>2

∴a的取值范围是(2,+∞).
点评:本题主要考查了函数奇偶性的应用.函数的奇偶性,单调性,定义域和值域都是考试常考的内容.
练习册系列答案
相关习题

科目:高中数学 来源:陕西省汉中地区2007-2008学年度高三数学第一学期期中考试试卷(理科) 题型:022

若函数f(x)=的定义域为M,g(x)=lo(2+x=6x2)的单调递减区间是开区间N,设全集U=R,则M∩CU(N)=________.

查看答案和解析>>

科目:高中数学 来源:苏教版江苏省扬州市2007-2008学年度五校联考高三数学试题 题型:044

已知函数(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是单调减函数,求实数m的取值范围;

(2)设g(x)=f(x)+lnx,当m≥-2时,求g(x)在上的最大值.

查看答案和解析>>

科目:高中数学 来源:山东省莒南一中2008-2009学年度高三第一学期学业水平阶段性测评数学文 题型:044

设f(x)=lo的奇函数,a为常数,

(Ⅰ)求a的值;

(Ⅱ)证明:f(x)在(1,+∞)内单调递增;

(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>()x+m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案