如图,在四边形中,
,
,点
为线段
上的一点.现将
沿线段
翻折到
(点
与点
重合),使得平面
平面
,连接
,
.
(Ⅰ)证明:平面
;
(Ⅱ)若,且点
为线段
的中点,求二面角
的大小.
(Ⅰ)连接,
交于点
,在四边形
中,
证得,推出
,从而
,得到
平面
。
(Ⅱ)二面角的大小为
.
解析试题分析:(Ⅰ)连接,
交于点
,在四边形
中,
∵,
∴,∴
,
∴
又∵平面平面
,且平面
平面
=
∴平面
……… 6分
(Ⅱ)如图,以为原点,直线
,
分别为
轴,
轴,平面
内过
且垂直于直线
的直线为
轴建立空间直角坐标系,可设点
又,
,
,
,且由
,
有
,解得
,∴
8分
则有,设平面
的法向量为
,
由,即
,故可取
10分
又易取得平面的法向量为
,并设二面角
的大小为
,
∴,∴
∴二面角的大小为
. 12分
考点:本题主要考查立体几何中的垂直关系,角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。证明过程中,往往需要将立体几何问题转化成平面几何问题加以解答。本题解答,通过建立适当的空间直角坐标系,利用向量的坐标运算,简化了繁琐的证明过程,实现了“以算代证”,对计算能力要求较高。
科目:高中数学 来源: 题型:解答题
(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是
,体积是
,
分别是棱
、
的中点.
(1)求直线与平面
所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,
,
E是侧棱AA1的中点,求
(1)求异面直线与B1E所成角的大小;
(2)求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成直二面角,如图二,在二面角
中.
(1)求证:BD⊥AC;
(2)求D、C之间的距离;
(3)求DC与面ABD成的角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,
,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。
(1)证明:平面PBC;
(2)求三棱锥D—ABC的体积;
(3)在的平分线上确定一点Q,使得
平面ABD,并求此时PQ的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com