精英家教网 > 高中数学 > 题目详情
2.若a∈R+,则当a+$\frac{1}{9a}$的最小值为m时,不等式m${\;}^{{x}^{2}+4x+3}$<1的解集为{x|x<-3或x>-1}.

分析 利用基本不等式求出a+$\frac{1}{9a}$的最小值m,再代入不等式m${\;}^{{x}^{2}+4x+3}$<1,化为等价的不等式x2+4x+3>0,求出解集即可.

解答 解:∵a∈R+,∴a+$\frac{1}{9a}$≥2$\sqrt{a•\frac{1}{9a}}$=$\frac{2}{3}$,
当且仅当a=$\frac{1}{9a}$,即a=$\frac{1}{3}$时取“=”;
∴a+$\frac{1}{9a}$的最小值为m=$\frac{2}{3}$;
∴不等式m${\;}^{{x}^{2}+4x+3}$<1为:
($\frac{2}{3}$)${\;}^{{x}^{2}+4x+3}$<1,
等价于x2+4x+3>0,
解得x<-3或x>-1;
故所求不等式的解集为{x|x<-3或x>-1}.
故答案为:{x|x<-3或x>-1}.

点评 本题考查了利用基本不等式求最值以及指数不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知a=$\sqrt{0.4}$,b=20.4,c=0.40.2,则a,b,c三者的大小关系是(  )
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{b}$=(4,2).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$的坐标;
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与5$\overrightarrow{a}$+2$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知幂函数f(x)=xα(α∈R),且$f(\frac{1}{2})=\frac{{\sqrt{2}}}{2}$.
(1)求函数f(x)的解析式;
(2)证明函数f(x)在定义域上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两条直线l1:2x+y-2=0与l2:2x-my+4=0.
(1)若直线l1⊥l2,求直线l1与l2交点P的坐标;
(2)若l1,l2以及x轴围成三角形的面积为1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在一个面积为8的矩形中随机撒一粒黄豆,若黄豆落到阴影部分的概率为$\frac{1}{4}$,则阴影部分的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:BD⊥平面ADD1A1
(Ⅱ)证明:CC1∥平面A1BD;
(Ⅲ)若DD1=AD,求直线CC1与平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中为真命题的是(  )
A.命题“若x>1,则x2>1”的否命题B.命题“若x>y,则x>|y|”的逆命题
C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2≥1,则x≥1”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于定义在D上的函数f(x),点A(m,n)是f(x)图象的一个对称中心的充要条件是:对任意x∈D都有f(x)+f(2m-x)=2n,现给出下列三个函数:
(1)f(x)=x3+2x2+3x+4
(2)$f(x)=\frac{1}{x+1}+\frac{1}{x+2}+…+\frac{1}{x+2015}$
(3)$h(x)={log_2}\frac{x}{4-x}$
这三个函数中,图象存在对称中心的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案