精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程及直线的普通方程;

2)设直线与曲线交于两点(点在点左边)与直线交于点.求的值.

【答案】1.(2

【解析】

1)利用公式和正弦的和角公式,将极坐标方程即可转化为直角坐标方程;消去参数,则参数方程即可转化为普通方程;

2)设出的极坐标点,联立与曲线的极坐标方程,即可求极坐标系下两点之间的距离.

解:(1)∵

又∵

∴曲线的直角坐标方程为

为参数),消去,得

∴直线的普通方程为

2)设点

∵曲线的极坐标方程为

代入,

∵直线的极坐标方程为

,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程:为参数),以原点为极点,轴非负半轴为极轴(取相同单位长度)建立极坐标系,圆的极坐标方程为:

1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

2)求圆上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,其图象关于直线对称.给出下面四个结论:①将的图象向右平移个单位长度后得到函数图象关于原点对称;②点图象的一个对称中心;③;④在区间上单调递增.其中正确的结论为(

A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机运动计步已成为一种时尚,某中学统计了该校教职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

(Ⅰ)求直方图中的值,并由频率分布直方图估计该校教职工一天步行数的中位数;

(Ⅱ)若该校有教职工175人,试估计一天行走步数不大于130百步的人数;

(Ⅲ)在(Ⅱ)的条件下该校从行走步数大于150百步的3组教职工中用分层抽样的方法选取6人参加远足活动,再从6人中选取2人担任领队,求这两人均来自区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线Cy22pxp0)的焦点为F,点PC上,若PFx轴,且POFO为坐标原点)的面积为1.

1)求抛物线C的方程;

2)若C上的两动点ABABx轴异侧)满足,且|FA|+|FB||AB|+2,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx-a

(1)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)若f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={(xy)|(x34cosq2+(y54sinq2=4θR},B={(xy)|3x+4y19=0}.记集合P=AB,则集合P所表示的轨迹的长度为( )

A.8B.8C.8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未来肯定是非接触的,无感支付的方式将成为主流,这有助于降低交互门槛”.云从科技联合创始人姚志强告诉南方日报记者.相对于主流支付方式二维码支付,刷脸支付更加便利,以前出门一部手机解决所有,而现在连手机都不需要了,毕竟,手机支付还需要携带手机,打开二维码也需要时间和手机信号.刷脸支付将会替代手机,成为新的支付方式.某地从大型超市门口随机抽取50名顾客进行了调查,得到了如下列联表:

男性

女性

总计

刷脸支付

18

25

非刷脸支付

13

总计

50

1)请将上面的列联表补充完整,并判断是否有95%的把握认为使用刷脸支付与性别有关?

2)从参加调查且使用刷脸支付的顾客中随机抽取2人参加抽奖活动,抽奖活动规则如下:

一等奖中奖概率为0.25,奖品为10元购物券张(,且),二等奖中奖概率0.25,奖品为10元购物券两张,三等奖中奖概率0.5,奖品为10元购物券一张,每位顾客是否中奖相互独立,记参与抽奖的两位顾客中奖购物券金额总和为元,若要使的均值不低于50元,求的最小值.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.869

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的右焦点,过点的直线交椭圆于两点,当直线的下顶点时,的斜率为,当直线垂直于的长轴时,的面积为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)当时,求直线的方程;

(Ⅲ)若直线上存在点满足成等比数列,且点在椭圆外,证明:点在定直线上.

查看答案和解析>>

同步练习册答案