精英家教网 > 高中数学 > 题目详情

如图,在三棱柱中,侧棱底面的中点,.

(Ⅰ)求证://平面
(Ⅱ)设,求四棱锥的体积.

(Ⅰ)详见解析;(Ⅱ)体积为3.

解析试题分析:(Ⅰ)为了证明//平面,需要在平面内找一条与平行的直线,而要找这条直线一般通过作过且与平面相交的平面来找.在本题中联系到中点,故连结,这样便得一平面,接下来只需证与平面和平面的交线平行即可.

(Ⅱ)底面为一直角梯形,故易得其面积,本题的关键是求出点B到平面的距离.由于平面,所以易得平面平面.平面平面.根据两平面垂直的性质定理知,只需过B作交线AC的垂线即可得点B到平面的距离,从而求出体积.
试题解析:(Ⅰ)连接,设相交于点,连接

∵ 四边形是平行四边形,
∴点的中点.
的中点,∴为△的中位线,

平面,平面,
平面.          6分
(Ⅱ) ∵平面,平面,
∴ 平面平面,且平面平面
,垂足为,则平面

在Rt△中,
∴四棱锥的体积
 12分
考点:1、直线与平面的位置关系;2、多面体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABCA1B1C1中,CACBABAA1,∠BAA1=60°.

(1)证明:ABA1C
(2)若ABCB=2,A1C,求三棱柱ABCA1B1C1的体积;
(3)若平面ABC⊥平面AA1B1BABCB=2,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥中,.

(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体的棱长为.

(1)求异面直线所成角的大小;
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3.

(1)求证:BB1∥平面EFM;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点

(Ⅰ)证明:BC1//平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求证:EM∥平面ABC;
(2)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定
点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的体积与侧面积.

查看答案和解析>>

同步练习册答案