精英家教网 > 高中数学 > 题目详情

【题目】如图,已知正方形的边长为2,点的中点.以为圆心,为半径,作弧交于点.若为劣弧上的动点,则的最小值为__________

【答案】

【解析】

首先以A为原点,直线ABAD分别为xy轴,建立平面直角坐标系,可设Pcosθsinθ),从而可表示出,根据两角和的正弦公式即可得到52sinθ+φ),从而可求出的最小值.

如图,以A为原点,边ABAD所在直线为xy轴建立平面直角坐标系,则:

A00),C22),D02),设Pcosθsinθ

(﹣cosθ2sinθ

=(2cosθ)(﹣cosθ+2sinθ2

52cosθ+2sinθsinθ+φ),tanφ

sinθ+φ)=1时,取最小值

故答案为:52

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果同时满足以下三条:对任意的,总有,都有成立,则称函数为理想函数.

(1) 若函数为理想函数,求的值;

(2)判断函数是否为理想函数,并予以证明;

(3) 若函数为理想函数,假定,使得,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=aexlnx+ ,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.
(1)求a、b;
(2)证明:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的右焦点为( ,0),离心率为
(1)求椭圆C的标准方程;
(2)若动点P(x0 , y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(c为常数),且f(1)=0.

(1)求c的值;

(2)证明函数f(x)在[0,2]上是单调递增函数;

(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,某种商品在销售中有如下关系:x(1≤x≤30,x∈N+)天的销售价格(单位:/)f(x)=x天的销售量(单位:)g(x)=a-x(a为常数),且在第20天该商品的销售收入为1 200(销售收入=销售价格×销售量).

(1)a的值,并求第15天该商品的销售收入;

(2)求在这30天中,该商品日销售收入y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014福建)在下列向量组中,可以把向量 =(3,2)表示出来的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E: =1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.

(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1 , l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数f(x)=sin(2x+ )的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是

查看答案和解析>>

同步练习册答案