精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.
(1)求a、b的值;
(2)求f(x)的单调区间.

分析 (1)求出函数的导数,利用函数的极值点,列出方程组,求解a,b即可.
(2)利用函数的极值点,结合导函数的符号,推出函数的单调区间即可.

解答 解:(1)由已知函数f(x)=2x3+3ax2+3bx+8,
可得f′(x)=6x2+6ax+3b
因为f(x)在x=1及x=2处取得极值,所以1和2是方程f′(x)=6x2+6ax+3b=0的两根,
故$\left\{\begin{array}{l}6+6a+3b=0\\ 24+12a+3b=0\end{array}\right.$
解得:a=-3、b=4.
(2)由(1)可得f(x)=2x3-9x2+12x+8,
可得 f′(x)=6x2-18x+12=6(x-1)(x-2)
当x<1或x>2时,f′(x)>0,f(x)是增加的;
当1<x<2时,f′(x)<0,f(x)是减少的.
所以,f(x)的单调增区间为(-∞,1)和(2,+∞),f(x)的单调减区间为(1,2).

点评 本题考查导函数的应用,函数的极值以及函数的单调区间的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若f(x)=$\root{3}{2x+4}$,则f(2)=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+1-a在区间[0,1]上的最大值是2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)如果${3^{-5x}}>{({\frac{1}{3}})^{x+6}}$,求x的取值范围?
(2)如果loga(2x)>loga(-x+9),求x的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则m=-1,f(-log35)的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P为圆C:(x-2)2+(y-3)2=4上一动点,点A(4,0),且$\overrightarrow{AQ}$=$\frac{1}{3}$$\overrightarrow{AP}$,求动点Q的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知y=f(x)是定义在R上的偶函数,其对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,则当f(sinx)>f(cosx)时,x的取值范围(  )
A.(2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈ZB.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z
C.(2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈ZD.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z

查看答案和解析>>

同步练习册答案