精英家教网 > 高中数学 > 题目详情
设函数f(x)=
a
3
x3+bx2+4cx+d的图象关于原点对称,f(x)的图象在点P(1,m)处的切线的斜率为-6,且当x=2时,f(x)有极值.
(1)求a、b、c、d的值;
(2)求f (x)的单调区间;
(3)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤
44
3
分析:(1)欲求实数a、b、c、d的值,利用在x=1处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率结合f′(2)=0.从而问题解决.
(2)把(1)求出的实数a、b、c、d的值代入导函数中确定出解析式,令导函数等于0求出x的值,根据x的值分区间讨论导函数的正负,进而得到函数的单调区间.
(3)由(2)知f(x)在[-1,1]上单调递减,当x∈[-1,1]时 f(1)≤f(x)≤f(-1)即|f(x)|≤
22
3
,进一步得到|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤
22
3
+
22
3
=
44
3
从而得到证明.
解答:解:(1)f′(x)=ax2+2bx+4c由条件可得b=d=0,f'(1)=-6,f′(2)=0
∴a+4c=-6,4a+4c=0 解得 a=2,c=-2
故a=2,b=0,c=-2,d=0.′(4分)
(2)∵f(x)=
2
3
x3-8x,∴f'(x)=2x2-8=2(x+2)(x-2)
令f'(x)>0得x<-2或x>2,令f′(x)<0得-2<x<2.
∴f(x)的单调增区间为(和[2,+∞);f(x)的单调减区间为[-2,2].(8分)
(3)证明:由(2)知f(x)在[-1,1]上单调递减
∴当x∈[-1,1]时 f(1)≤f(x)≤f(-1)即-
22
3
≤f(x)≤
22
3
亦即|f(x)|≤
22
3

故当x1,x2∈[-1,1]时,|f(x1)|≤
22
3
,|f(x2)|≤
22
3

从而|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤
22
3
+
22
3
=
44
3

即|f(x1)-f(x2)|≤
44
3
.…(5分)
点评:此题主要考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导函数的正负判断函数的单调性并根据函数的增减性得到函数的极值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=(2-a)lnx+
1
x
+2ax.
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a≠0时,求f(x)的单调区间;
(Ⅲ)当a=2时,对任意的正整数n,在区间[
1
2
,6+n+
1
n
]上总有m+4个数使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,如:[1,5]=1.[-1,3]=-2,当x∈[0,n](n∈N*)时,设函数f(x)的值域为A,记集合A中的元素个数为a,则:
(1)a3=
6
6

(2)式子
an+90
n
的最小值为
181
13
181
13

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x-sinx,数列{an}满足an+1=f(an).
(1)若a1=2,试比较a2与a3的大小;
(2)若0<a1<1,求证:0<an<1对任意n∈N*恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
4+
1
x2
,数列{an}满足:点P(an
1
an+1
)
在曲线y=f(x)上,其中n∈N*,且a1=1,an>0.
(I)求a2和a3
(II)求数列{an}的通项公式;
(III)若bn=
1
an2
+2n
,n∈N*,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

任给实数a,b定义a?b=
a×b,a×b≥0
a
b
,a×b<0
  设函数f(x)=lnx?x,若{an}是公比大于0的等比数列,且a5=1,则f(a1)+f(a2)+f(a3)+…+f(a7)+f(a8)+f(a)=a1,则a1=(  )
A、e2B、e
C、2D、1

查看答案和解析>>

同步练习册答案