精英家教网 > 高中数学 > 题目详情

【题目】已知x,y满足: ,若目标函数z=ax+y取最大值时的最优解有无数多个,则实数a的值是(
A.0
B.﹣1
C.±1
D.1

【答案】D
【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 若a=0,则y=z,此时满足条件最大值不存;
若a>0,由z=ax+y得y=﹣ax+z,
若a>0,∴目标函数的斜率k=﹣a<0.
平移直线y=﹣ax+z,
由图象可知当直线 y=﹣ax+z和直线x+y=2平行时,
此时目标函数取得最大值时最优解有无数多个,
此时a=1满足条件;
若a<0,目标函数的斜率k=﹣a>0.
平移直线y=﹣ax+z,
由图象可知直线y=﹣ax+z,此时目标函数取得最大值只有一个,
此时a<0不满足条件.
故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在五面体ABCDEF中,四边形ABCD是边长为2的正方形,EF∥平面ABCD,EF=1,FB=FC,∠BFC=90°,AE=
(1)求证:AB⊥平面BCF;
(2)求直线AE与平面BDE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x(a≠0)为曲线y=f(x)的一条切线.
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣bx2为增函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中说法正确的是(
A.命题“p∨q为真”是命题“p∧q为真”的必要条件
B.向量 满足 ,则 的夹角为锐角
C.若am2≤bm2 , 则a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点. (Ⅰ)证明:PB∥平面ACM;
(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M﹣AC﹣B的大小为β,求sinαcosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对应边分别为a,b,c,且 .则使得sin2B+sin2C=msinBsinC成立的实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,集合M={0,1,2,3,4,5,6,7,8},现从M中任取两个不同元素m,n,则f(m)f(n)=0的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河南多地遭遇年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾.郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动Ⅰ级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”.学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成如表:

年龄(岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4


(Ⅰ)请在图中完成被调查人员年龄的频率分布直方图;
(Ⅱ)若从年龄在[25,35),[65,75]两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)设点E为PD的中点,求证:CE∥平面PAB;
(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为 ?若存在,试确定点N的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案