精英家教网 > 高中数学 > 题目详情

【题目】若有穷数列)满足:①;②.则称该数列为“阶非凡数列”

1)分别写出一个单调递增的“阶非凡数列”和一个单调递减的“阶非凡数列”;

2)设,若“阶非凡数列”是等差数列,求其通项公式;

3)记“阶非凡数列”的前项的和为,求证:

【答案】1)三阶;四阶

(2);(3)证明见解析;

【解析】

1)令即可得到“阶非凡数列”;令即可得到“阶非凡数列”;

2)由等差数列是“阶非凡数列” ,则数列各项以为分界线,接下来对公差分两种情况讨论,即,将均用表示,从而分别求得通项公式;

3)对分两种情况讨论,即,当时结论显然成立,当时,要结合绝对值不等式进行证明.

1)“阶非凡数列”为:;“阶非凡数列”为:.

(2)设等差数列的公差为

,即

时,为递增数列,

;②

.

时,为递减数列,同理可得:

.

3)当时,

时,

综上所述:成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )

A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著

B.从2014年到2018年这5年,高铁运营里程与年价正相关

C.2018年高铁运营里程比2014年高铁运营里程增长80%以上

D.从2014年到2018年这5年,高铁运营里程数依次成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②上是增函数或者减函数.

1)若在区间上是闭函数,求常数的值;

2)找出所有形如的函数(都是常数),使其在区间上是闭函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为正方体ABCD-A1B1C1D1,动点MB1点出发,在正方体表面沿逆时针方向运动一周后,再回到B1的运动过程中,点M与平面A1DC1的距离保持不变,运动的路程xl=MA1+MC1+MD之间满足函数关系l=fx),则此函数图象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上海途安型号出租车价格规定:起步费元,可行千米;千米以后按每千米按元计价,可再行千米;以后每千米都按元计价。假如忽略因交通拥挤而等待的时间.

请建立车费(元)和行车里程(千米)之间的函数关系式;

注意到上海出租车的计价系统是以元为单位计价的,如:小明乘坐途安型号出租车从华师大二附中本部到浦东实验学校走路线一(路线一总长千米)须付车费元,走路线二(路线二总长千米)也须付车费.将上述函数解析式进行修正(符号表示不大于的最大整数,符号表示不小于的最小整数);并求小明乘坐途安型号出租车从华师大二附中本部到闵行分校须付车费多少元?(注:两校区路线长千米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续投骰子两次得到的点数分别为mn,作向量mn),则(1,﹣1)的夹角成为直角三角形内角的概率是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(2017·长春市二模)如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,数列满足.

(1),求的值;

(2)(1)的条件下,求数列的前项和

(3)若数列中存在三项()依次成等差数列,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】举行动物运动会其中有小兔大兔接力赛跑一项,跑道从起点经过点再到终点,其中米,米,规定小兔跑第一棒从,大兔在处接力完成跑第二棒从,假定接力赛跑时小兔大兔的各自速度都是均匀的,且它们的速度之和为定值10/秒,试问小兔和大兔应以怎样的速度接力赛跑,才能使接力赛成绩最好(所需时间最短),并求其最短时间.

查看答案和解析>>

同步练习册答案