精英家教网 > 高中数学 > 题目详情

(文科做):已知双曲线过点A(-2,4)和B(4,4),它的一个焦点是抛物线y2=4x的焦点,求它的另一个焦点的轨迹方程.

解:∵抛物线y2=4x的焦点坐标为(1,0),
∴不妨设双曲线的焦点F1(1,0),
∵双曲线过点A(-2,4)和B(4,4),
∴|AF1|=|BF1|=5,
由双曲线的定义知,||AF1|-|AF2||=||BF1|-|BF2||,即|5-|AF2||=|5-|BF2||,
(1)当5-|AF2|=5-|BF2|时,即|AF2|=|BF2|,
∴焦点F2的轨迹是线段AB的中垂线,其方程为x=1(y≠0),
(2)当5-|AF2|=|BF2|-5时,即|AF2|+|BF2|=10>6,
∴焦点F2的轨迹是以A、B为焦点,长轴为10的椭圆,
∴其中心是(1,4),a=5,c=3,∴b2=25-9=16,
其方程为(y≠0).
∴所求的轨迹方程为:x=1(y≠0)或(y≠0).
分析:先求出抛物线y2=4x的焦点坐标为(1,0),再由双曲线的定义列出有关另一个焦点的方程,再进行分类讨论,由式子的几何意义和椭圆的定义进行求解,并把不符合题意的点去掉.
点评:本题考查了抛物线的性质,以及由双曲线和椭圆的定义求动点的轨迹方程,要求学生具备一定的逻辑推理能力,具有较大的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科做(1)(2)(4),理科全做)
已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点 
(1)证明:y1y2=-p2且(y1+y22=2p(x1+x2-p);
(2)点Q为线段AB的中点,求点Q的轨迹方程;
(3)若x1=1,x2=4,以坐标轴为对称轴的椭圆或双曲线C2过A、B两点,求曲线C1和C2的方程;
(4)在(3)的条件下,若曲线C2的两焦点分别为F1、F2,线段AB上有两点C(x3,y3),D(x4,y4)(x3<x4),满足:①SF1F2A-SF1F2C=SF1F2D-SF1F2B,②AB=3CD.在线段F1 F2上是否存在一点P,使PD=
11
,若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做):已知双曲线过点A(-2,4)和B(4,4),它的一个焦点是抛物线y2=4x的焦点,求它的另一个焦点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科做):已知双曲线过点A(-2,4)和B(4,4),它的一个焦点是抛物线y2=4x的焦点,求它的另一个焦点的轨迹方程.

查看答案和解析>>

同步练习册答案