精英家教网 > 高中数学 > 题目详情

【题目】已知,现给出如下结论:

.

其中正确结论的序号为(

A. ②③ B. ①④ C. ②④ D. ①③

【答案】A

【解析】分析:先求出f′(x),再进行因式分解,求出f′(x)0和f′(x)0对应x的范围,即求出函数的单调区间和极值,再由条件判断出a、b、c的具体范围和f(1)0且f(2)0,进行求解得到abc的符号,进行判断出f(0)的符号.

详解:由题意得,f′(x)=3x2﹣9x+6=3(x﹣1)(x﹣2),

当x1或x2时,f′(x)0,当1<x<2时,f′(x)<0,

函数f(x)的增区间是(﹣∞,1),(2,+∞),减区间是(1,2),

函数的极大值是f(1)=,函数的极小值是f(2)=2﹣abc,

∵a<b<c,且f(a)=f(b)=f(c)=0,

∴a<1<b<2<c,f(1)>0且f(2)0,解得2

∴f(0)=﹣abc<0,

则f(0)f(1)<0、f(0)f(2)>0,

故答案为:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某种书籍的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

表中.

为了预测印刷20千册时每册的成本费,建立了两个回归模型:.

(1)根据散点图,拟认为选择哪个模型预测更可靠?(只选出模型即可)

(2)根据所给数据和(1)中的模型选择,求关于的回归方程,并预测印刷20千册时每册的成本费.

附:对于一组数据,其回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下频率分布直方图:

(1)求直方图中的值;

(2)根据频率分布直方图估计样本数据的众数、中位数各是多少(结果保留整数);

(3)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,试计算数据落在上的概率.

(参考数据:若,则,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解我市特色学校的发展状况,某调查机构得到如下统计数据:

年份

2014

2015

2016

2017

2018

特色学校(百个)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根据上表数据,计算的相关系数,并说明的线性相关性强弱(已知:,则认为线性相关性很强;,则认为线性相关性一般;,则认为线性相关性较弱);

(Ⅱ)求关于的线性回归方程,并预测我市2019年特色学校的个数(精确到个).

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: 的焦点在x轴上
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1 , F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.

分组

频数

频率

0.4

合计

(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;

(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;

(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),过点的直线的参数方程为为参数).

(Ⅰ)求曲线的普通方程,并说明它表示什么曲线;

(Ⅱ)设曲线与直线分别交于两点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

)求证:平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:

分组

频数

频率

24

4

0.1

2

0.05

合计

1

(1)求出表中及图中的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.

查看答案和解析>>

同步练习册答案