精英家教网 > 高中数学 > 题目详情
若函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域为(  )
A、[0,
5
2
]
B、[-1,4]
C、[-5,5]
D、[-3,7]
分析:由题意得函数y=f(x+1)的定义域为x∈[-2,3],即-1≤x+1≤4,所以函数f(x)的定义域为[-1,4].由f(x)与f(2x-1)的关系可得-1≤2x-1≤4,解得0≤x≤
5
2
解答:解:因为函数y=f(x+1)的定义域为x∈[-2,3],即-1≤x+1≤4,
所以函数f(x)的定义域为[-1,4].
由f(x)与f(2x-1)的关系可得-1≤2x-1≤4,
解得0≤x≤
5
2
..
所以函数f(2x-1)定义域为[0,
5
2
]
故选A.
点评:解决此类问题的关键是熟练掌握求函数定义域的方法,如含分式的、含根式的、含对数式的、含幂式的以及抽象函数求定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:?x∈R,使得3x>x;命题q:若函数y=f(x-1)为奇函数,则函数y=f(x)的图象关于点(1,0)成中心对称.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2-x的反函数是y=-log2x;
③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.
其中所有正确命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=
16-4x
的值域是[0,4);
③命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=0对称.
其中所有正确命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2-x(x>0)的反函数是y=-log2x(x>0);
③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(-1,0)对称.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
③若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=-1对称.
其中正确的命题序号是
 

查看答案和解析>>

同步练习册答案