精英家教网 > 高中数学 > 题目详情

(本小题满分14分)为了解初三学生女生身高情况,某中学对初三女生身高进行了一次抽样调查,根据所得数据整理后列出了频率分布表如下:
组 别       频数   频率   
145.5~149.5      1       0.02   
149.5~153.5      4       0.08   
153.5~157.5    22     0.44   
157.5~161.5      13      0.26   
161.5~165.5      8       0.16   
165.5~169.5     m       n  
合 计        M       N  
(1)求出表中所表示的数m,n,M,N分别是多少?
(2)画出频率分布直方图和频率分布折线图.
(3)若要从中再用分层抽样方法抽出10人作进一步调查,则身高在[153.5,161.5)范围内的应抽出多少人?
(4)根据频率分布直方图,分别求出被测女生身高的众数,中位数和平均数?(结果保留一位小数)

(1)    ;(2)见解析;
(3)7人;(4)众数:155.5   中位数:157.1    平均数:157.8。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数 )
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程恰有两个不相等实根的概率;
(2)若从区间中任取一个数,从区间中任取一个数,求方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)一个口袋内装有大小相同的6个小球,其中2个红球,记为A1、A2,4个黑球,记为B1、B2、B3、B4,从中一次摸出2个球.
(Ⅰ)写出所有的基本事件;
(Ⅱ)求摸出的两个球颜色不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)把一个正方体的表面涂上红色,在它的长、宽、高上等距离地各切三刀,则大正方体被分割成64个大小相等的小正方体,将这些小正方体均匀地搅混在一起,如果从中任取1个,求下列事件的概率
(1)事件A=“这个小正方体各个面都没有涂红色”
(2)事件B=“这个小正方体只有1个面涂红色”
(3)事件C=“这个小正方体至少2个面涂红色”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两个盒子中分别装有标记为的大小相同的四个小球,甲从盒中等可能地取出个球,乙从盒中等可能地取出个球.
(1)用有序数对表示事件“甲抽到标号为i的小球,乙抽到标号为是j的小球”,求取出的两球标号之和为5的概率;
(2)甲、乙两人玩游戏,约定规则:若甲抽到的小球的标号比乙大,则甲胜;反之,则乙胜.你认为此规则是否公平?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做每一道题的概率均为.
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望. 的解析

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)为增强市民交通规范意识,我市面向全市征召劝导员志愿者,分布于各候车亭或十字路口处.现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示.
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;
(2)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加“规范摩的司机的交通意识”培训活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.

分组(单位:岁)
 
频数
 
频率
 
[20,25)
 
5
 
0.05
 
[25,30)
 

 
0.20
 
[30,35)
 
35
 

 
[35,40)
 
30
 
0.30
 
[40,45]
 
10
 
0.10
 
合计
 
100
 
1.00
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题9分)袋中有2个红球,n个白球,各球除颜色外均相同.已知从袋中摸出2个球均为白球的概率为,(Ⅰ)求n;(Ⅱ)从袋中不放回的依次摸出三个球,记ξ为相邻两次摸出的球不同色的次数(例如:若取出的球依次为红球、白球、白球,则ξ=1),求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(14分)(理)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用表示取球终止所需要的取球次数.
(I)求袋中所有的白球的个数;
(II)求随机变量的概率分布;
(III)求甲取到白球的概率.

查看答案和解析>>

同步练习册答案