【题目】设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有( )
A.50种
B.49种
C.48种
D.47种
【答案】B
【解析】解:
解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;
若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;
若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;
若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;
若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;
若集合A中有两个元素,集合B中有两个元素,则选法种数有C54=5种;
若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;
若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;
若集合A中有三个元素,集合B中有两个元素,则选法种数有C55=1种;
若集合A中有四个元素,集合B中有一个元素,则选法种数有C55=1种;
总计有49种,选B.
解法二:集合A、B中没有相同的元素,且都不是空集,
从5个元素中选出2个元素,有C52=10种选法,小的给A集合,大的给B集合;
从5个元素中选出3个元素,有C53=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;
从5个元素中选出4个元素,有C54=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;
从5个元素中选出5个元素,有C55=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;
总计为10+20+15+4=49种方法.选B.
【考点精析】解答此题的关键在于理解组合与组合数的公式的相关知识,掌握从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.
科目:高中数学 来源: 题型:
【题目】实数x分别取什么值时,复数z=x2+x-6+(x2-2x-15)i对应的点Z在下列位置?
(1)第三象限;
(2)第四象限;
(3)直线x-y-3=0上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)=f(5+x),则f(x)一定是( )
A. 是偶函数,也是周期函数
B. 是偶函数,但不是周期函数
C. 是奇函数,也是周期函数
D. 是奇函数,但不是周期函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤-1,则x2+x+q=0有实根”的逆否命题;
④若ab是正整数,则a,b都是正整数.
其中真命题是________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我市出租车在3km以内,起步价为12.5元,行程达到或超过3km后,每增加1km加付2.4元(不足1km亦按1km计价),昨天汪老师乘坐这种出租车从长城大厦到莲花北,恰巧沿途未遇红灯,下车时支付车费19.7元,汪老师乘出租车走了xkm的路,则( )
A.5<x≤7
B.5<x≤6
C.5≤x≤6
D.6<x≤7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )
A.y=100x
B.y=50x2﹣50x+100
C.y=50×2x
D.y=100log2x+100
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一等腰三角形的周长是20,则其底边长y关于其腰长x的函数关系式是( )
A.y=20﹣2x(x≤10)
B.y=20﹣2x(x<10)
C.y=20﹣2x(5≤x≤10)
D.y=20﹣2x(0<x<10)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用二分法研究函数f(x)=x3+3x﹣1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈ , 第二次应计算 , 这时可判断x0∈ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com