精英家教网 > 高中数学 > 题目详情
19.若$\underset{lim}{n→∞}$[2-($\frac{r}{r+1}$)n]=2,则实数r的取值范围是(-$\frac{1}{2}$,+∞).

分析 由$\underset{lim}{n→∞}$[2-($\frac{r}{r+1}$)n]=2得$\underset{lim}{n→∞}$($\frac{r}{r+1}$)n=0,再解不等式|$\frac{r}{r+1}$|<1即可.

解答 解:因为$\underset{lim}{n→∞}$[2-($\frac{r}{r+1}$)n]=2,
所以$\underset{lim}{n→∞}$($\frac{r}{r+1}$)n=0,
因此,|$\frac{r}{r+1}$|<1,
解得r∈(-$\frac{1}{2}$,+∞),
故答案为:(-$\frac{1}{2}$,+∞).

点评 本题主要考查了极限及其运算,以及含绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知数列{an}满足a1=2,an+1=an2,则数列{an}的通项公式为 an=${2}^{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求极限.
$\underset{lim}{x→∞}$$\frac{3{x}^{2}-2x+1}{4{x}^{3}+3{x}^{2}-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f′(x0)=3,则$\underset{lim}{h→0}\frac{f({x}_{0}-2h)-f({x}_{0}+h)}{6h}$等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求经过两圆x2+y2+6x-7=0和x2+y2+6y=0的交点,并且圆心在直线2x-y-4=0上的圆的方程x2+y2-$\frac{2}{3}$x+$\frac{20}{3}$y+$\frac{7}{9}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知ω>0,在函数y=sinωx与y=cosωx的图象的交点中,相邻两个交点的横坐标之差为1,则ω=(  )
A.1B.2C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则x-2y的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果命题P(n)对于n=k(k∈N*)时成立,那么它对n=k+2也成立.若P(n)对于n=2时成立,则下列结论正确的是(  )
A.P(n)对所有正整数n成立B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n成立D.P(n)对所有大于1的正整数n成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正项等比数列{an}满足a1+a2=3,S4=15,则a7=64.

查看答案和解析>>

同步练习册答案