精英家教网 > 高中数学 > 题目详情
17.如图,已知抛物线y=$\frac{1}{2}$x2+bx+c与y轴相交于C,与x轴相交于A,B,点A的坐际为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式:
(2)点D是该抛物线上位于A,C之间的一动点,求△ADC面积的最大值,并求出此时点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,请求出点P的坐际;若不存在,请说明理由.

分析 (1)由于抛物线的解析式中只有两个待定系数,因此只需将A、C两点的坐标代入抛物线中即可求出二次函数的解析式;
(2)首先假设出D点坐标,进而表示出S=S△AOD+S△OCD-S△AOC得出答案;
(3)根据抛物线的解析式,可求出B点的坐标,进而能得到直线BC的解析式,设出点P的横坐标,根据直线BC的解析式表示出P点的纵坐标,然后利用坐标系两点间的距离公式分别表示出△ACP三边的长,从而根据:①AP=CP、②AC=AP、③CP=AC,三种不同等量关系求出符合条件的P点坐标.

解答 解:(1)由于抛物线经过A(2,0),C(0,-1),
则有c=-1,2+2b+c=0
解得:b=-$\frac{1}{2}$,
故抛物线的解析式为:y=$\frac{1}{2}$x2-$\frac{1}{2}$x-1.
 (2)如图1,连接OE,AE
当y=0,则0=x2-x-1,
解得:x1=2,x2=-1,
A(2,0),设D(x,$\frac{1}{2}$x2-$\frac{1}{2}$x-1),
故△ACD的面积:
S=S△AOD+S△OCD-S△AOC
=$\frac{1}{2}$×2×[-($\frac{1}{2}$ x2-$\frac{1}{2}$x-1)+×1×x-$\frac{1}{2}$×1×2
=-$\frac{1}{2}$x2+x
=-(x-1)2+$\frac{1}{2}$,
因此当x=1,
即D(1,-1)时,△ACE的面积最大,且最大值为$\frac{1}{2}$.
 (3)由(1)的抛物线解析式易知:B(-1,0),
可求得直线BC的解析式为:y=-x-1;
设P(x,-x-1),因为A(2,0),C(0,-1),则有:
AP2=(x-2)2+(-x-1)2=2x2-2x+5,
AC2=5,CP2=x2+(-x-1+1)2=2x2
①如图2,

当AP=CP时,AP2=CP2,有:
2x2-2x+5=2x2,解得x=2.5,
故P1(2.5,-3.5);
②如图3,

当AP=AC时,AP2=AC2,有:
2x2-2x+5=5,
解得:x=0(舍去),x=1,
故P2(1,-2);
③如图4,

当CP=AC时,CP2=AC2,有:
2x2=5,
解得:x=±$\frac{\sqrt{10}}{2}$,
故P3($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{10}}{2}$-1),P4(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{10}}{2}$-1);
综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,-3.5),P2(1,-2),P3($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{10}}{2}$-1),P4(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{10}}{2}$-1).

点评 此题主要考查了二次函数解析式的确定、图形面积的求法、二次函数最值的应用、等腰三角形的构成条件等重要知识,同时还考查了分类讨论、数形结合的数学思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在正项等比数列{an}中,a2=3,a8=27,则该数列第5项a5为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x-2a|-|x-5|,且对于任意x∈R都有f(x)≤1恒成立
(I)求a的取值范围;
(Ⅱ)若0<b<1,求证:|loga(1-b)|>|loga(1+b)|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.a为实数,求函数f(x)=sinxcosx+a(sinx-cosx),x∈[$\frac{π}{2}$,π]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.集合A={y|y=1-x-$\frac{4}{x}$},集合B={x|x2-(3+a)x+3a≤0},若A∩B=[5,6],求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|x2+2x+m=0},集合B={-1,4},如果A∩B=A且A≠B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),且焦距为2,直线l交椭圆于E、F两点(E、F与A点不重合),且满足AE⊥AF.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)O为坐标原点,若点P满足2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求直线AP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系中,已知角α的终边经过点A(5,-12),则sinα=(  )
A.-$\frac{12}{13}$B.$\frac{5}{13}$C.-$\frac{5}{12}$D.-$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知$\overrightarrow{a}$=(tanθ,-1),$\overrightarrow{b}$=(1,-2),其中θ为锐角,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$夹角为90°,则$\frac{1}{2sinθcosθ+co{s}^{2}θ}$=(  )
A.1B.-1C.5D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案