精英家教网 > 高中数学 > 题目详情

【题目】设有直线和平面,则下列四个命题中,正确的是( )

A. mαnα,则mnB. mαnαmβlβ,则αβ

C. αβmα,则mβD. αβmβmα,则mα

【答案】D

【解析】

A中,mn相交、平行或异面;在B中,αβ相交或平行;

C中,mβmβmβ相交;在D中,由直线与平面垂直的性质与判定定理可得mα

由直线mn,和平面αβ,知:

对于A,若mαnα,则mn相交、平行或异面,故A错误;

对于B,若mαnαmβnβ,则αβαβ相交,故B错误;

对于中,若αβαβmα,则mβmβmβ相交,故C错误;

对于D,若αβmβmα,则由直线与平面垂直的性质与判定定理得mα,故D正确.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列说法:①用刻画回归效果,当越大时,模型的拟合效果越差,反之则越好;②归纳推理是由特殊到一般的推理,而演绎推移则是由一般到特殊的推理;③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”;④设有一个回归方程,变量增加1个单位时,平均增加5个单位;⑤线性回归方程必过点.其中错误的个数有( )

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: 的焦点在x轴上
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1 , F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),过点的直线的参数方程为为参数).

(Ⅰ)求曲线的普通方程,并说明它表示什么曲线;

(Ⅱ)设曲线与直线分别交于两点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=alnx+ + x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

)求证:平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个命题与正整数n有关,如果当 时命题成立,那么可推得当时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )

A. 当n=7时该命题不成立 B. 当n=7时该命题成立

C. 当n=9时该命题不成立 D. 当n=9时该命题成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足对任意,都有成立,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某组织在某市征集志愿者参加志愿活动,现随机抽出60名男生和40名女生共100人进行调查,统计出100名市民中愿意参加志愿活动和不愿意参加志愿活动的男女生比例情况,具体数据如图所示.

(1)根据条件完成下列列联表,并判断是否有的把握认为愿意参与志愿活动与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)现用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,再从中抽取2人作为队长,求抽取的2人至少有一名女生的概率.

参考数据及公式:

.

查看答案和解析>>

同步练习册答案