精英家教网 > 高中数学 > 题目详情

已知椭圆P的焦点坐标为(0,±1),长轴等于焦距的2倍.

(1)求椭圆P的方程;

(2)矩形ABCD的边AB在y轴上,点C、D落在椭圆P上,求矩形绕y轴旋转一周后所得圆柱体侧面积的最大值.

答案:
解析:

  (1)椭圆的方程为  4分

  (2)记  7分

  由,得  12分

  当,即时取到  13分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E的焦点坐标为F1(-2,0),点M(-2,
2
)在椭圆E上.
(1)求椭圆E的方程;
(2)设Q(1,0),过Q点引直线l与椭圆E交于A,B两点,求线段AB中点P的轨迹方程;
(3)O为坐标原点,⊙O的任意一条切线与椭圆E有两个交点C,D且
OC
OD
,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知椭圆P的焦点坐标为
0,±1
,长轴等于焦距的2倍.
(1)求椭圆P的方程;
(2)矩形ABCD的边AB在y轴上,点C、D落在椭圆P上,求矩形绕y轴旋转一周后所得圆柱体侧面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的焦点坐标为F1(-2,0),点M(-2,
2
)在椭圆E上.
(1)求椭圆E的方程;
(2)设Q(1,0),过Q点引直线l与椭圆E交于A,B两点,求线段AB中点P的轨迹方程;
(3)O为坐标原点,⊙O的任意一条切线与椭圆E有两个交点C,D且
OC
OD
,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州市萧山区高考数学模拟试卷20(理科)(解析版) 题型:解答题

已知椭圆=1的焦点坐标为(±1,0),椭圆经过点(1,
(1)求椭圆方程;
(2)过椭圆左顶点M(-a,0)与直线x=a上点N的直线交椭圆于点P,求的值.
(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若KQA+KQB=2与l的斜率无关,求t的值.

查看答案和解析>>

同步练习册答案