已知函数f(x)=xln x.
(1)求函数f(x)的单调区间;
(2)k为正常数,设g(x)=f(x)+f(k-x),求函数g(x)的最小值;
(3)若a>0,b>0证明:f(a)+(a+b)ln2≥f(a+b)-f(b)
解:(1)f′(x)=ln x+1,f′(x)>0,得x>
;
f′(x)<0,得0<x<
,
∴f(x)的单调递增区间是(
,+∞),单调递减区间是(0,
).…(3分)
(2)∵g(x)=f(x)+f(k-x)=x ln x+(k-x)ln(k-x),定义域是(0,k)
∴g′(x)=ln x+1-[ln (k-x)+1]=ln
…(5分)
由g′(x>0,得
<x<k,由g′(x<0,得0<x<
,
∴函数g(x)在(0,
) 上单调递减;在(
,k)上单调递增,…(7分)
故函数g(x)的最小值是:y
min=g(
)=kln
.…(8分)
(3)∵a>0,b>0∴在(2)中取x=
,k=2,
可得f(
)+f(2-
)≥2ln1 f(
)+f(
)≥0
?
ln
+
ln
≥0
?alna+blnb+(a+b)ln2-(a+b)ln(a+b)≥0
?f(a)+(a+b)ln2≥f(a+b)-f(b) …(12分)
分析:(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案.
(2)构造函数g(x)=f(x)+f(k-x),(k>0),利用导函数判断出g(x)的单调性,进一步求出g(x)的最小值为
整理可得证.
(3)先研究f(x)在区间[-e
2,-e
-1]上的单调性,再利用导数求解f(x)在区间[-e
2,-e
-1]上的最大值问题即可,故只要先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值即得.
点评:本小题主要考查函数的导数,单调性,利用导数求闭区间上函数的最值等基础知识,考查综合利用数学知识分析问题、解决问题的能力,中档题.