【题目】已知数列{an}的前n项和为Sn,2Sn+2n=an+1﹣2,a2=8,其中n∈N*.
(1)记bn=an+1,求证:{bn}是等比数列;
(2)设为数列{cn}的前n项和,若不等式k>Tn对任意的n∈N*恒成立,求实数k的取值范围.
科目:高中数学 来源: 题型:
【题目】已知直线与轴,轴分别交于,,线段的中垂线与抛物线有两个不同的交点、.
(1)求的取值范围;
(2)是否存在,使得,,,四点共圆,若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为,其范围为,分别有五个级别:畅通;基本畅通;轻度拥堵;中度拥堵;严重拥堵.晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.
(Ⅰ)用分层抽样的方法从交通指数在,,的路段中共抽取个路段,求依次抽取的三个级别路段的个数;
(Ⅱ)从(Ⅰ)中抽出的个路段中任取个,求至少有个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求f(x)的最小正周期和单调递减区间;
(Ⅱ)将函数f(x)的图象向右平移个单位,得到函数g(x)的图象,求g(x)在区间上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C1的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C2的极坐标方程为ρ=2sinθ.
(1)探究直线l与曲线C2的位置关系,并说明理由;
(2)若曲线C3的极坐标方程为,且曲线C3与曲线C1、C2分别交于M、N两点,求|OM|2|ON|2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的右焦点到渐近线的距离为3.现有如下条件:①双曲线的离心率为; ②双曲线与椭圆共焦点; ③双曲线右支上的一点到的距离之差是虚轴长的倍.
请从上述3个条件中任选一个,得到双曲线的方程为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x对所有的b∈(-∞,0],x∈(e,e2]都成立,则实数a的取值范围是( )
A. [e,+∞)B. [,+∞)
C. [,e2)D. [e2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上顶点为,以为圆心椭圆的长半轴为半径的圆与轴的交点分别为,.
(1)求椭圆的标准方程;
(2)设不经过点的直线与椭圆交于,两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com