精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,过点的直线分别交于不同的两点,直线恒过点

1)证明:直线的斜率之和为定值;

(2)直线分别与轴相交于两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标,若不存在,请说明理由.

【答案】(1)证明见解析 (2) 轴上存在定点使为定值,该定值为1

【解析】

1)设Px1y1),Qx2y2),联立直线ykx4)和椭圆方程,运用韦达定理,直线PQAPAQ的斜率分别为kk1k2,运用直线的斜率公式,化简整理即可得证;

2)设Mx30),Nx40),由y1k1x2),令y0,求得M的坐标,同理可得N的坐标,再由两点的距离公式,化简整理可得所求乘积.

(1)设,直线的斜率分别为,由

,可得:

(2)由,令,得,即

同理,即,设轴上存在定点

,要使为定值,即

轴上存在定点使为定值,该定值为1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业拥有3条相同的生产线,每条生产线每月至多出现一次故障.各条生产线是否出现故障相互独立,且出现故障的概率为.

1)求该企业每月有且只有1条生产线出现故障的概率;

2)为提高生产效益,该企业决定招聘名维修工人及时对出现故障的生产线进行维修.已知每名维修工人每月只有及时维修1条生产线的能力,且每月固定工资为1万元.此外,统计表明,每月在不出故障的情况下,每条生产线创造12万元的利润;如果出现故障能及时维修,每条生产线创造8万元的利润;如果出现故障不能及时维修,该生产线将不创造利润,以该企业每月实际获利的期望值为决策依据,在之中选其一,应选用哪个?(实际获利=生产线创造利润-维修工人工资)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从00010990.

1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)

2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.

设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为恰当选择"的概率是多少?(均值,标准差均精确到0.1

(参考公式和数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按照干支顺序相配,构成了“干支纪年法”,其相配顺序为:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60为一个周期,周而复始,循环记录.按照“干支纪年法”,中华人民共和国成立的那年为己丑年,则2013年为(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,是曲线段是参数,)的左、右端点,上异于的动点,过点作直线的垂线,垂足为.

1)建立适当的极坐标系,写出点轨迹的极坐标方程;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx=fx=g'x-a是常数).若对aR,函数hx=kxk是常数)的图象与曲线y=fx)总相切于一个定点.

1)求k的值;

2)若对∈(0+∞),[f-h][f-h]0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )

①公共图书馆业机构数与年份的正相关性较强

②公共图书馆业机构数平均每年增加13.743个

③可预测 2019 年公共图书馆业机构数约为3192个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=fx),若存在x0,使得fx0=x0,则称x0是函数y=fx)的一个不动点,设二次函数fx=ax2+b+1x+b-2

)当a=2b=1时,求函数fx)的不动点;

)若对于任意实数b,函数fx)恒有两个不同的不动点,求实数a的取值范围;

)在()的条件下,若函数y=fx)的图象上AB两点的横坐标是函数fx)的不动点,且直线是线段AB的垂直平分线,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,中心在原点,焦点在y轴上的椭圆C与椭圆的离心率相同,且椭圆C短轴的顶点与椭圆E长轴的顶点重合.

1)求椭圆C的方程;

2)若直线l与椭圆E有且仅有一个公共点,且与椭圆C交于不同两点AB,求的最大值.

查看答案和解析>>

同步练习册答案