精英家教网 > 高中数学 > 题目详情
一个圆柱形容器里装有水,放在水平地面上,现将该容器倾斜,这时水面是一个椭圆面(如图),当圆柱的母线与地面所成角时,椭圆的离心率是         
首先,椭圆的短轴长为圆柱的直径,椭圆的长轴、圆柱底面的直径和母线三者组成一个三角直角形,且长轴与直径的夹角为。离心率。答案:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,直线,椭圆分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,的重心分别为若原点在以线段为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C:为椭圆C的两焦点,P为椭圆C上一点,连接
延长交椭圆于另外一点Q,则⊿的周长_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动
点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点
使得为定值?,若存在,求出的坐标,若不存在,说明理由。
(Ⅲ)若在第一象限,且点关于原点对称,点轴上的射影为,连接 并延长
交椭圆于点,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆的中心在坐标原点,其中一个焦点为圆的圆心,右顶点是圆F与x轴的一个交点.已知椭圆与直线相交于A、B两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)求面积的最大值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线的方程;
(2)已知动直线过点,交抛物线两点.
若直线的斜率为1,求的长;
是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆中心在原点,且经过定点,其一个焦点与抛物线的焦点重合,则该椭圆的方程为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的长轴长为4,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(Ⅰ)(ⅰ)求椭圆的方程; (ⅱ)求动圆圆心轨迹的方程;
(Ⅱ) 在曲线上有两点,椭圆上有两点,满足共线,共线,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

查看答案和解析>>

同步练习册答案