精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(x2­­+bx+c)ex,其中b,cR为常数. 

(Ⅰ)若b2>4(c-1),讨论函数f(x)的单调性;

(Ⅱ)若b2≤4(c-1),且=4,试证:-6≤b≤2.

 

【答案】

【解析】本题中给定了不等式关系,减小了题目的难度,避免了对导函数是否有零点和有几个零点的讨论,此外,对于导数定义的考查也在本题中体现出来.注意到其中代换的技巧c=f′(0).

(1)可用导数的知识求其单调性,注意到对题目中条件b2>4c-1的运用,即保证导函数有两个零点,再进行计算.

(2)注意到f′(0)=c,则上述极限式变形为 =f′(0),再结合不等式求解.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案