精英家教网 > 高中数学 > 题目详情
16.已知a,b,c∈R+,满足abc(a+b+c)=2,则(a+c)(b+c)的最小值是2$\sqrt{2}$.

分析 由(a+c)(b+c)=ab+ac+bc+c2=ab+c(a+b+c)=ab+$\frac{2}{ab}$,由基本不等式可得.

解答 解:∵abc(a+b+c)=2,
∴$\frac{2}{abc}$=a+b+c,
∴(a+c)(b+c)=ab+ac+bc+c2=ab+c(a+b+c)=ab+$\frac{2}{ab}$≥2$\sqrt{2}$,当且仅当ab=$\sqrt{2}$时取等号,
∴(a+c)(b+c)的最小值为2$\sqrt{2}$.
故答案为:2$\sqrt{2}$

点评 本题考查基本不等式,正确变形是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,一根长为2米的竹竿AB斜靠在在直角墙壁上,假设竹竿在同一平面内移动,当竹竿的下段点A从距离墙角O点1米的地方移动到$\sqrt{3}$米的地方,则AB的中点D经过的路程为$\frac{π}{6}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求过点P(-1,3),并且在两轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x),当x≤0时,f(x)=$\left\{\begin{array}{l}{(x+2)^{2},x∈(-∞,-1)}\\{(\frac{1}{2})^{x}-1,x∈[-1,0]}\end{array}\right.$,则f(f(3))=(  )
A.-9B.-1C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知z∈C,若A=$\frac{{z}^{2}-{z}^{-2}}{2i}$,B=z•$\overline{z}$,则A和B之间的大小关系是设z=a+bi,当${a}^{2}<\frac{1}{2}$时,A>B;当a2=$\frac{1}{2}$时,A=B;当${a}^{2}>\frac{1}{2}$时,A<B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若tan(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则tan(α-$\frac{π}{4}$)=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设Sn为数列{an}的前n项和,Sn+$\frac{1}{{2}^{n}}$=(-1)nan(n∈N*),则数列{Sn}的前9项和为-$\frac{341}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从某校高二年级800名学生中随机抽取100名测量身高,得到频率分布直方图如图.
(1)求这100名学生中身高在170厘米以下的人数;
(2)根据频率分布直方图估计这800名学生的平均身高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列{an}中,已知a1=3,an=96,其前n顶和Sn=189,则n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案