精英家教网 > 高中数学 > 题目详情
10.圆心在直线$y=\frac{1}{3}x$上的圆C与y轴的正半轴相切,圆C截x轴所得的弦长为$4\sqrt{2}$,则圆C的标准方程为(  )
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

分析 由圆心在直线$y=\frac{1}{3}x$上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.

解答 解:设圆心为(3t,t),半径为r=|3t|,
∵圆C截x轴所得弦的长为$4\sqrt{2}$,
∴t2+8=9t2
∴t=±1,
∵圆C与y轴的正半轴相切,
∴t=-1不符合题意,舍去,
故t=1,3t=3,
∴(x-3)2+(y-1)2=9.
故选A.

点评 此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知F1、F2是椭圆的两个焦点,A是椭圆短轴的一个端点,若△A F1F2是正三角形,则这个椭圆的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.a,b,c三个数成等比数列,其中a=7+4$\sqrt{3}$,c=7-4$\sqrt{3}$,则b=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若直线l经过A(2,1),B(1,-m2)(m∈R)两点,则直线l的倾斜角α的取值范围是(  )
A.0≤α≤$\frac{π}{4}$B.$\frac{π}{2}$<α<πC.$\frac{π}{4}$≤α<$\frac{π}{2}$D.$\frac{π}{2}$<α≤$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,且斜边AB=2$\sqrt{2}$,侧棱AA1=4,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ∈R).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当λ为何值时,B1E⊥面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某市教育局随机调查了300名高中学生周末的学习时间(单位:小时),制成了如图所示的频率分布直方图,其中学习时间的范围是[0,30],样本数据分组为,[0,5),[5,10),[10,15),[15,20),[20,25),[25,30],根据直方图,这300名高中生周末的学习时间是[5,15)小时的人数是(  )
A.15B.27C.135D.165

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若方程f(x)=t恰有3个不同的实数根,则实数t的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f'(x)=6x+2,数列{an}的前n项和为Sn,点$({n,{S_n}})({n∈{N^*}})$均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式;
(II)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,若Tn=m对所有n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的离心率为$\frac{\sqrt{5}}{2}$,点F1、F2是其左右焦点,点P(5,y0)与点Q是双曲线上关于坐标原点对称的两点,则四边形F1QF2P的面积为6$\sqrt{5}$.

查看答案和解析>>

同步练习册答案