【题目】设不等式组 ,表示的平面区域为D,若圆C:(x+1)2+(y+1)2=r2(r>0)经过区域D上的点,则r的取值范围是( )
A.[2 ,2 ]
B.(2 ,3 ]??
C.(3 ,2 ]
D.(0,2 )∪(2 ,+∞)
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2. (Ⅰ)证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某等腰三角形的底角为α,顶角为β,且cosβ= . (Ⅰ)求sinα的值;
(Ⅱ)若函数f(x)=tanx在[﹣ ,α]上的值域与函数g(x)=2sin(2x﹣ )在[0,m]上的值域相同,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a为实数,p:点M(1,1)在圆(x+a)2+(y﹣a)2=4的内部; q:x∈R,都有x2+ax+1≥0.
(1)若p为真命题,求a的取值范围;
(2)若q为假命题,求a的取值范围;
(3)若“p且q”为假命题,且“p或q”为真命题,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B是函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)上任意一点,过M(x,y)作MN⊥x轴交直线AB于N,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.
(1)若f(x)=x+ ,x∈[ ,2],证明:f(x)在[ ,2]上“ 阶线性近似”;
(2)若f(x)=x2在[﹣1,2]上“k阶线性近似”,求实数k的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣2x﹣4y+1=0.
(1)求过点M(3,1)的圆C的切线方程;
(2)若直线l:ax﹣y+4=0与圆C相交于A,B两点,且弦AB的长为 ,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com