精英家教网 > 高中数学 > 题目详情

【题目】如图,棱形与正三角形的边长均为2,它们所在平面互相垂直, ,且

1)求证:

2)若,求二面角的余弦值.

【答案】()详见解析;()二面角的余弦值是

【解析】试题分析:(1)依据线面平行的判定定理,需要在平面找到一条直线与直线平行即可.因为平面平面,则过点,连接,证明四边形为平行四边形即可;(2)由(1)知平面,又为等边三角形,,分别以所在直线为轴建立如图所示空间直角坐标系,分别求出平面和平面的法向量即可.

试题解析:(1)如图,过点,连接,可证得四边形为平行四边形,平面

2)连接,由(1),得中点,又为等边三角形,分别以所在直线为轴建立如图所示空间直角坐标系

设平面的法向量为

,令,得

设平面的法向量为

,令,得

所以

所以二面角的余弦值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1) 为何值时, .①有且仅有一个零点;②有两个零点且均比-1大;

(2)若函数有4个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中公差d≠0,有a1+a4=14,且a1a2a7成等比数列.

(Ⅰ)求{an}的通项公式an与前n项和公式Sn

(Ⅱ)令bn= (k<0),若{bn}是等差数列,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为,宽为的长方形铁皮做一个无盖的容器.先在四角分别截去一个小正方形,然后把四边翻转,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前3项和为6,前8项和为-4.

(1)求数列{an}的通项公式;

(2)设bn=(4-an)qn-1 (q≠0,n∈N*),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函数g(x)的极大值;

(2)求证:1++…+>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,两焦点,点在椭圆上.

(1)求椭圆的方程;

(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),

(1)求函数的单调区间

(2)当的两个极值点为).

证明:

恰为的零点的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是单调减函数,若将方程分别称为函数的不动点与稳定点.则的不动点的稳定点的 (  )

A.充要条件        B.充分不必要条件  

C.必要不充分条件      D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案