精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且右焦点到右准线的距离为1.过轴上一点 为常数,且的直线与椭圆交于两点,与交于点是弦的中点,直线交于点

(1)求椭圆的标准方程;

(2)试判断以为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.

【答案】12)经过定点

【解析】

(1)由题意可得,从而得到椭圆方程;

(2)对斜率分类讨论,斜率存在时直线的方程为,联立方程可得,可得,进而可得直线的方程为,求得,表示圆的方程,可得定点.

(1)由题意,得,解得,所以

所以椭圆C的标准方程为

(2)由题意,当直线的斜率不存在或为零时显然不符合题意;

所以设的斜率为,则直线的方程为

又准线方程为

所以点的坐标为

得,

所以

所以

从而直线的方程为,(也可用点差法求解)

所以点的坐标为

所以以为直径的圆的方程为

因为该式对恒成立,令,得

所以以为直径的圆经过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在多面体中,是边长为的正方形,,平面平面

(1)求证:平面

(2)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求函数的极值;

2)当时,若不等式时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某外卖企业两位员工今年月某天日派送外卖量的数据(单位:件),如茎叶图所示针对这天的数据,下面说法错误的是( )

A.阿朱的日派送量的众数为B.阿紫的日派送量的中位数为

C.阿朱的日派送量的中位数为D.阿朱的日派送外卖量更稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设双曲线的上焦点为,上顶点为,点为双曲线虚轴的左端点,已知的离心率为,且的面积.

(1)求双曲线的方程;

(2)设抛物线的顶点在坐标原点,焦点为,动直线相切于点,与的准线相交于点,试推断以线段为直径的圆是否恒经过轴上的某个定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,其左顶点在圆.

(1)求椭圆的方程;

(2)直线与椭圆的另一个交点为,与圆的另一个交点为.

时,求直线的斜率;

是否存在,使?若存在,求出直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)当时,函数的图象恒不在轴的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人各有三张卡片,甲的卡片分别标有数字1、2、3,乙的卡片分别标有数字0、1、3.两人各自随机抽出一张,甲抽出的卡片上的数字记为,乙抽出的卡片上的数字记为,则的积为奇数的概率为________

查看答案和解析>>

同步练习册答案