精英家教网 > 高中数学 > 题目详情
(文)已知数列{an}的通项公式为an=3n,集合A={y|y=ai , i≤100 , i∈N*},B={y|y=4m+1,m∈N*}.现在集合A中随机取一个元素y,则y∈B的概率为
1
2
1
2
分析:y=ai=3i∈A,i≤100,i∈N*.当i=2k,k∈N*时,y=32k=9k=(8+1)k=C
 
0
k
8k+C
 
1
k
8k-1+…+C
 
k-1
k
8+C
 
k
k
=4×2(C
 
0
k
8k-1+C
 
1
k
8k-2+…+C
 
k-1
k
)+1,故y∈B.由此能求出在集合A中随机取一个元素y,则y∈B的概率.
解答:解:设y=ai=3i∈A,i≤100,i∈N*
当i=2k,k∈N+时,
∵y=32k=9k=(8+1)k=C
 
0
k
8k+C
 
1
k
8k-1+…+C
 
k-1
k
8+C
 
k
k
=4×2(C
 
0
k
8k-1+C
 
1
k
8k-2+…+C
 
k-1
k
)+1,
∴y∈B.
∵y=ai=3i∈A,i≤100,i∈N*
∴1≤2k≤100,
1
2
≤k≤50,k∈N*

∴满足条件的k有50个,
∴在集合A中随机取一个元素y,则y∈B的概率为
50
100
=
1
2

故答案为:
1
2
点评:本题考查等比数列的通项公式的应用,解题时要认真审题,注意二项式定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)已知数列{an}满足an+1=an+
1
n(n+1)
,且a1=1,则an=
2-
1
n
2-
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知数列{an}满足a1=1,an=
12
an-1+1(n≥2),
(1)求a2,a3,a4的值;
(2)求证:数列{an-2}是等比数列,并求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知数列{an}中,a1=2  an=3an-1+4(n≥2),求an及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(文) 已知数列{an}满足an+1=an+1(n∈N+),且a2+a4+a6=18,则log3(a5+a7+a9)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足x1=
1
2
,xn+1=
1
1+xn
,n∈N*
(1)猜想数列{x2n}的单调性,并证明你的结论;
(2)证明:|xn+1-xn|≤
1
6
2
5
n-1
(文)已知数列{an}满足a1=1,a2=2,an+2=
an+an+1
2
,n∈N*
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

同步练习册答案