精英家教网 > 高中数学 > 题目详情

【题目】解关于x的不等式ax2﹣(a+1)x+1<0.

【答案】解:当a=0时,不等式的解为{x|x>1};
当a≠0时,分解因式a(x﹣ )(x﹣1)<0
当a<0时,原不等式整理得:x2 x+ >0,即(x﹣ )(x﹣1)>0,
不等式的解为{x|x>1或x< };
当0<a<1时,1< ,不等式的解为{x|1<x< };
当a>1时, <1,不等式的解为{x| <x<1};
当a=1时,不等式的解为
【解析】当a=0时,得到一个一元一次不等式,求出不等式的解集即为原不等式的解集;当a≠0时,把原不等式的左边分解因式,然后分4种情况考虑:a小于0,a大于0小于1,a大于1和a等于1时,分别利用求不等式解集的方法求出原不等式的解集即可.
【考点精析】掌握解一元二次不等式是解答本题的根本,需要知道求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥ABCD﹣PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是(  )
A.?x0∈R,
B.?x∈R,
C.“a>1,b>1”是“ab>1”的充要条件
D.设为向量,则“|?|=||||”是“”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若在点处的切线与直线垂直,求实数的值;

(2)求函数的单调区间;

(3)讨论函数在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求点A到平面A1DE的距离;
(2)求证:CF∥平面A1DE;
(3)求二面角E﹣A1D﹣A的平面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log (﹣x+1).
(1)求f(x)的解析式;
(2)若f(a﹣1)<﹣1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案