精英家教网 > 高中数学 > 题目详情

已知向量,且
(1)将表示为的函数,并求的单调递增区间;
(2)已知分别为的三个内角对应的边长,若,且,求的面积.

(1),增区间为(2)

解析试题分析:(1)由,根据平面向量数量积公式可得的关系式。然后再用二倍角公式和化一公式将其化简为的形式,将整体角代入正弦函数的增区间,解得的范围,即为函数的单调递增区间。(2)由可得角的大小,由余弦定理和可得,由面积公式可求其面积。
试题解析:解:(1)由,           . 2分
     4分
,         5分
,即递增区间为     6分
(2)因为,所以,          7分
                             8分
因为,所以.                                     9分
由余弦定理得:,即                   10分
,因为,所以                        11分
.                               12分
考点:1平面向量数量积;2三角函数的化简及单调性;3余弦定理。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).
(1)求f(x)的解析式;
(2)当x∈[]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)在给定的平面直角坐标系中,画函数的简图;

(2)求的单调增区间;
(3) 函数的图象只经过怎样的平移变换就可得到的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径 ,之间的夹角为.

(1)将图书馆底面矩形的面积表示成的函数.
(2)求当为何值时,矩形的面积有最大值?其最大值是多少?(用含R的式子表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为坐标原点.
(1),求的值;
(2)若,且,求的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为(,),求f(θ)的值;
(2)若点P(x,y)为平面区域Ω: 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2·sincos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且,求sinx、cosx、tanx的值

查看答案和解析>>

同步练习册答案