精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求函数的单调区间,并判断函数的奇偶性;
(Ⅱ)若不等式f(x2+2)≤f(2ax-a)的解集是A={x|x2-5x+4≤0}的子集,求实数a的取值范围.

解:(Ⅰ)
当x∈[0,+∞)时,f′(x)≥0
∴f(x)在[0,+∞)上是单调增函数,在(-∞,0)上是单调减函数
∴f(x)为R上的偶函数
(Ⅱ)由x2+2>0,f(2ax-a)=f(|2ax-a|)
从而不等式等价于:x2+2≤|a||2x-1|
又不等式x2-5x+4≤0的解集为A=[1,4]的子集,
故1≤x≤4,∴2x-1>0
即x2+2-2|a|x+|a|≤0
10当△<0时,不等式的解集为空集,满足条件,即|a|∈(-1,2)?|a|<2成立;
20当△=0时,|a|=2,此时x2-4x+4≤0?x=2∈A成立;
30当△>0时,|a|>2,
设方程x2+2-2|a|x+|a|=0的两根为x1,x2,则
综上,
分析:(Ⅰ)求出函数的导数,令导数大于0,解出函数的递增区间,令导数小于0,求出函数的递减区间,此类函数的奇偶性可用等价形式证明,本题可以证明f(x)-f(-x)=0,来得出函数是偶函数;
(Ⅱ)由(Ⅰ)结论,不等式f(x2+2)≤f(2ax-a)等价于x2+2≤|a||2x-1|,再根据A=[1,4],将不等式转化为x2+2-2|a|x+|a|≤0,若此不等式解集是空集,符合题意,若不是空集,则此不等式相应方程的根必在区间[1,4]内,由二次函数的性质转化为不等式,求解参数的范围.
点评:本题利用导数研究函数的单调性,解题的关键是理解并掌握函数的导数的符号与函数的单调性的关系,此类题一般有两类题型,一类是利用导数符号得出单调性,一类是由单调性得出导数的符号,本题属于第一种类型.本题的解题重心在第二小问上,利用单调性解抽象不等式是函数中的一类难题,如本题求解时要分为三类研究,用到了分类讨论的思想,此类题常因考虑不周详而导致解题失败,做题时要考虑完善.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数)在上函数值总小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高一(下)3月月考数学试卷(解析版) 题型:解答题

已知函数,编写一个程序求函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=试画出求函数值的程序框图.

查看答案和解析>>

同步练习册答案