精英家教网 > 高中数学 > 题目详情
15.如图,圆O的半径为2,等腰△ABC的底边的两端点B,C在圆O上,AB与圆O交于点D,AD=2,圆O的切线DE交AC于E点.
(I)求证:DE⊥AC;
(Ⅱ)若∠A=30°,求BD的长.

分析 (I)设AC交圆O于点F,则∠B=∠AFD,∠C=∠ADF,证明四边形ADOF是菱形,OD∥AC,即可证明DE⊥AC;
(Ⅱ)作OG⊥BD于点G,则G是BD的中点,DG=ODcos30°,即可求BD的长.

解答 (I)证明:设AC交圆O于点F,则∠B=∠AFD,∠C=∠ADF,
∵∠B=∠C,
∴∠AFD=∠ADF,
∴AD=AF=2,
∵OD=OF=2,
∴四边形ADOF是菱形,
∴OD∥AC,
∵DE为切线,
∴OD⊥DE,
∴DE⊥AC;
(Ⅱ)作OG⊥BD于点G,则G是BD的中点,
∵OD∥AC,
∴∠BDO=∠A=30°,
∴DG=ODcos30°=$\sqrt{3}$,
∴BD=2$\sqrt{3}$.

点评 本题考查圆的切线,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,给出以下说法:
(1)b=-4a;
(2)当a>0且$\frac{m+n}{2}$>2时,f(x)在区间[n,m]上的最大值为f(m);
(3)无论a如何取值,函数值f(1),f(-1),f($\frac{5}{2}$)中,最小的一个不可能是f(1).
其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某质检部门要检验一批乳制品是否合格,从待抽检的500待乳制品中抽取40待进行检验,利用随机数表抽取样本时,先将500待乳制品按000,001,…,499进行标号,如果从以下随机数表第2行第3列的数考试向右读,则得到的第5个样本的编号是350

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P是直线3x+4y+8=0的动点,PA、PB是圆(x-1)2+(y-1)2=1的两条切线,A、B是切点,C是圆心,则四边形PACB面积的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在集合{1,2,3,4}中任取一个偶数a和一个奇数b构成以原点为起点的向量$\overrightarrow{α}$=(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n,其中面积不超过4的平行四边形的个数为m,则$\frac{m}{n}$=(  )
A.$\frac{4}{15}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知中心在坐标原点的椭圆和双曲线的焦点相同,左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,且△PF1F2是以PF1为斜边的等腰直角三角形,则椭圆和双曲线的离心率之积为(  )
A.1B.2$\sqrt{2}$+3C.2$\sqrt{2}$D.3一2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-$\frac{1}{2}$相切,
(1)求实数a,b的值;
(2)求函数f(x)在[$\frac{1}{e}$,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若不等式x2+2(a-2)x+4>0对一切x∈R恒成立,则a的取值范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,棱长为1的正方体ABCD-A1B1C1D1中,E,F为A1C1上的动点,且EF=$\frac{1}{2}$,则下列结论中错误的是(  )
A.BD⊥CE
B.△CEF的面积为定值
C.四面体BCEF的体积随EF的位置的变化而变化
D.直线BE与CF为异面直线

查看答案和解析>>

同步练习册答案