精英家教网 > 高中数学 > 题目详情
4.设命题p:2x<1,命题q:x2<1,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据不等式的关系结合充分条件和必要条件的定义进行判断即可.

解答 解:由2x<1得x<0,由x2<1得-1<x<1,
则p是q成立的既不充分也不必要条件,
故选:D

点评 本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图所示,三棱柱ABC-A1B1C1中,AA1⊥BC,A1B⊥BB1,若AB=2,AC=$\sqrt{3}$,BC=$\sqrt{7}$,则下列结论正确的是(  )
A.:当AA1=$\frac{\sqrt{42}}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{3\sqrt{7}}{7}$
B.:当AA1=$\frac{6}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{3\sqrt{7}}{7}$
C.:当AA1=$\frac{\sqrt{42}}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{6}{7}$$\sqrt{7}$
D.:当AA1=$\frac{6}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{6}{7}$$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,A、B是两个非空集合,定义A*B表示阴影部分集合,若集合A={x|y=$\sqrt{3x-{x^2}}$,x,y∈R},B={y|y=2x,x>0},则A*B=(  )
A.[0,+∞)B.[0,1]∪(3,+∞)C.[0,1)∪[3,+∞)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知cosα=-$\frac{4}{5}$,并且α是第二象限的角
(1)求sinα和tanα的值;
(2)求$\frac{2sinα+3cosα}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式比较大小正确的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.1.70.3<0.93.1D.0.8-0.1>1.250.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设定义在R上的函数f(x)、f1(x)和f2(x),满足f(x)=f1(x)+f2(x),且对任意实数x1、x2(x1≠x2),恒有|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|成立.
(1)试写 出一组满足条件的具体的f1(x)和f2(x),使f1(x)为增函数,f2(x)为减函数,但f(x)为增函数.
(2)判断下列两个命题的真假,并说明理由.
命题1):若f1(x)为增函数,则f(x)为增函数;
命题2):若f2(x)为增函数,则f(x)为增函数.
(3)已知f(x)=x3+x2+x+1,写出一组满足条件的具体的f1(x)和f2(x),且f2(x)为非常值函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC的三个内角A,B,C所对的边分别为$a,b,c,asinAsinB+b{cos^2}A=\sqrt{3}a$,则$\frac{b}{a}$的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an+1=an+2,且a2=3,bn=ln(an)+ln(an+1).
(1)求数列{bn}的通项公式;
(2)令${c_n}={e^{-{b_n}}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案