精英家教网 > 高中数学 > 题目详情

若P是两条异面直线l、m外的任意一点,则下列命题中假命题的是________.(填序号)
①过点P有且仅有一条直线与l、m都平行;
②过点P有且仅有一条直线与l、m都垂直;
③过点P有且仅有一条直线与l、m都相交;
④过点P有且仅有一条直线与l、m都异面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

四棱锥P-ABCD的底面ABCD是边长为2的正方形,PA⊥底面ABCDPA =4,则PC与底面ABCD所成角的正切值为     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则    (写出所有正确结论的编号). 
①四面体ABCD每组对棱相互垂直;
②四面体ABCD每个面的面积相等;
③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;
④连接四面体ABCD每组对棱中点的线段相互垂直平分;
⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则

(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH是正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正方体中,过对角线的一个平面交棱于E,交棱于F,则:①四边形一定是平行四边形;②四边形有可能是正方形;③四边形有可能是菱形;④四边形有可能垂直于平面.
其中所有正确结论的序号是         .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列命题中正确的是________.(填序号)
①若直线a不在α内,则a∥α;
②若直线l上有无数个点不在平面α内,则l∥α;
③若l与平面α平行,则l与α内任何一条直线都没有公共点;
④平行于同一平面的两直线可以相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设P表示一个点,a,b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是________.(填序号)
①P∈a,P∈αaα;
②a∩b=P,bβaβ;
③a∥b,aα,P∈b,P∈αbα;
④α∩β=b,P∈α,P∈βP∈b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正三棱锥P ­ABC中,D,E分别是AB,BC的中点,下列结论:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE,其中正确结论的序号是________.

查看答案和解析>>

同步练习册答案