【题目】在平面直角坐标系中,抛物线的准线为,其焦点为F,点B是抛物线C上横坐标为的一点,若点B到的距离等于.
(1)求抛物线C的方程,
(2)设A是抛物线C上异于顶点的一点,直线AO交直线于点M,抛物线C在点A处的切线m交直线于点N,求证:以点N为圆心,以为半径的圆经过轴上的两个定点.
【答案】(1);(2)定点,
【解析】
(1) 由题意,得,则△BOF为等腰三角形,求出线段OF的中点的横坐标即可得到抛物线C的方程;
(2) 设切线m的方程为:,联立方程,借助韦达定理可得,再求出,表示以为半径的圆的方程即可得到两个定点.
(1)由题意,得,则△BOF为等腰三角形,
因为点B的横坐标为,所以线段OF的中点的横坐标为,
从而点F的横坐标为1,即,所以p=2,
故所求抛物线C的方程为;
(2)证明:设切线m的方程为:,由
(*)
由题意知,即
所以方程(*)的根为 ,从而,
直线OA的方程为
由,得,由,得,
所以以点N为圆心,以为半径的圆的方程为,
令,得,解得,
所以圆N经过x轴上的两个定点和.
科目:高中数学 来源: 题型:
【题目】(1)已知数列为等差数列,其前n项和为.若,试分别比较与、与的大小关系.
(2)已知数列为等差数列,的前n项和为.证明:若存在正整数k,使,则.
(3)在等比数列中,设的前n项乘积,类比(2)的结论,写出一个与有关的类似的真命题,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正四面体ABCD的体积为1,O为其中心,正四面体EFGH与正四面体ABCD关于点O对称,则这两个正四面体的公共部分的体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且, , .
(1)若, 分别为, 的中点,求证: 平面;
(2)若, 与平面所成角的正弦值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线:,过抛物线焦点且与轴垂直的直线与抛物线相交于、两点,且的周长为.
(1)求抛物线的方程;
(2)若过焦点且斜率为1的直线与抛物线相交于、两点,过点、分别作抛物线的切线、,切线与相交于点,求:的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。设由椭圆 所围成的平面图形绕 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com