精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线的准线为,其焦点为F,点B是抛物线C上横坐标为的一点,若点B到的距离等于

(1)求抛物线C的方程,

(2)设A是抛物线C上异于顶点的一点,直线AO交直线于点M,抛物线C在点A处的切线m交直线于点N,求证:以点N为圆心,以为半径的圆经过轴上的两个定点.

【答案】(1);(2)定点

【解析】

(1) 由题意,得,则△BOF为等腰三角形,求出线段OF的中点的横坐标即可得到抛物线C的方程;

(2) 设切线m的方程为:,联立方程,借助韦达定理可得,再求出,表示以为半径的圆的方程即可得到两个定点.

(1)由题意,得,则△BOF为等腰三角形,

因为点B的横坐标为,所以线段OF的中点的横坐标为

从而点F的横坐标为1,即,所以p=2

故所求抛物线C的方程为

(2)证明:设切线m的方程为:,由

*

由题意知,即

所以方程(*)的根为 ,从而

直线OA的方程为

,得,由,得

所以以点N为圆心,以为半径的圆的方程为

,得,解得

所以圆N经过x轴上的两个定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数上的值域

(2)设,若方程有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知数列为等差数列,其前n项和为.若,试分别比较的大小关系.

2)已知数列为等差数列,的前n项和为.证明:若存在正整数k,使,则.

3)在等比数列中,设的前n项乘积,类比(2)的结论,写出一个与有关的类似的真命题,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四面体ABCD的体积为1O为其中心,正四面体EFGH与正四面体ABCD关于点O对称,则这两个正四面体的公共部分的体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C以点为圆心,且被直线截得的弦长为.

1)求圆C的标准方程;

2)若直线l经过点,且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,四边形是矩形,的中点,,平面平面

1)求证:平面

2)求锐二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且 .

(1)若 分别为 的中点,求证: 平面

(2)若 与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线,过抛物线焦点且与轴垂直的直线与抛物线相交于两点,且的周长为.

(1)求抛物线的方程;

(2)若过焦点且斜率为1的直线与抛物线相交于两点,过点分别作抛物线的切线,切线相交于点,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。设由椭圆 所围成的平面图形绕 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案