精英家教网 > 高中数学 > 题目详情
3.设数列{an}的前n项和为Sn,且Sn=$\frac{{a}_{n+1}}{2}$-2n-1,已知a1=t,则下列说法正确的是①
①数列{Sn+2n}是等比数列;
②当t≠-2时,数列{an}的通项公式an=2(t+2)•3n-2-2n-1
③若an+1≤an成立,则t的范围是t≤-$\frac{3}{2}$;
④若an+1≥an,则t的最小值是-2.

分析 由已知数列递推式可得${a}_{n+1}=3{a}_{n}+{2}^{n-1}$,然后利用等比数列的定义可得数列{Sn+2n}是等比数列;求出等比数列的通项公式,代入Sn=$\frac{{a}_{n+1}}{2}$-2n-1,可得n≥2时数列{an}的通项公式an=2(t+2)•3n-2-2n-1,验证首项不成立,说明②错误;再利用作差法,化为关于n的函数,可得使an+1≤an成立和使an+1≥an成立的t的取值范围.

解答 解:①∵Sn=$\frac{{a}_{n+1}}{2}$-2n-1
∴$\frac{{S}_{n}+{2}^{n}}{{S}_{n-1}+{2}^{n-1}}=\frac{\frac{{a}_{n+1}}{2}-{2}^{n-1}+{2}^{n}}{\frac{{a}_{n}}{2}-{2}^{n-2}+{2}^{n-1}}$,
∵${S}_{n}-{S}_{n-1}=\frac{{a}_{n+1}}{2}-{2}^{n-1}-\frac{{a}_{n}}{2}+{2}^{n-2}$=$\frac{{a}_{n+1}-{a}_{n}}{2}-{2}^{n-2}$,
∴${a}_{n+1}=3{a}_{n}+{2}^{n-1}$,代入$\frac{{S}_{n}+{2}^{n}}{{S}_{n-1}+{2}^{n-1}}=\frac{\frac{{a}_{n+1}}{2}-{2}^{n-1}+{2}^{n}}{\frac{{a}_{n}}{2}-{2}^{n-2}+{2}^{n-1}}$,
可得$\frac{{S}_{n}+{2}^{n}}{{S}_{n-1}+{2}^{n-1}}=3$,
∴数列{Sn+2n}是等比数列,故①正确;
②∵数列{Sn+2n}是等比数列,且${S}_{1}+{2}^{1}={a}_{1}+2=t+2$,
∴${S}_{n}+{2}^{n}=(t+2)•{3}^{n-1}$,则${S}_{n}=(t+2)•{3}^{n-1}-{2}^{n}$,
${S}_{n-1}=(t+2)•{3}^{n-2}-{2}^{n-1}$(n≥2),
∴当n≥2时,${a}_{n}=2{S}_{n-1}+{2}^{n-1}$=2(t+2)•3n-2-2n+2n-1=2(t+2)•3n-2-2n-1
验证首项不成立,故②不正确;
③${a}_{n}=2(t+2)•{3}^{n-2}-{2}^{n-1}$,${a}_{n+1}=2(t+2)•{3}^{n-1}-{2}^{n}$,
若an+1≤an,则2(t+2)•3n-1-2n-2(t+2)•3n-2+2n-1=4(t+2)•3n-2-2n-1≤0,
即$4(t+2)≤\frac{{2}^{n-1}}{{3}^{n-2}}=2•(\frac{2}{3})^{n-2}$,∴t+2<0,则t<-2,故③错误.
④由③知,an+1≥an,则$4(t+2)≥2•(\frac{2}{3})^{n-2}$,4(t+2)≥3,即t$≥-\frac{5}{4}$,故④错误.
∴说法正确的是①②.
故答案为:①.

点评 本题考查命题的真假判断与应用,考查了数列递推式,考查了等比关系的确定,考查数列的函数特性,考查计算能力,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
序号12345678910
身高x(cm)192164172177176159171166182166
脚长(码)48384043443740494639
序号11121314151617181920
身高x(cm)169178167174168179165170162170
脚长y(码)42414043404438423941
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高不超过175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长不超过42码”的为“非大脚”.
请根据上表数据完成下面的2×2列联表:
高个非高个合计
大脚
非大脚12
合计20
(Ⅱ)根据(1)中表格的数据,你能否有99%的把握认为脚的大小与身高有关系?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正四面棱锥P-ABCD的侧棱长为2$\sqrt{3}$,侧面等腰三角形的顶角为30°,则从A点出发环绕面一周后回到A点的最短路程为(  )
A.2$\sqrt{6}$B.2$\sqrt{3}$C.$\sqrt{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把函数y=ex的图象按向量$\overrightarrow{a}$=(2,0)平移,得到y=f(x)的图象,则f(x)=(  )
A.ex+2B.ex-2C.ex+2D.ex-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=-x2+ax-a+6,x∈[0,1].
(1)求f(x)的最小值g(a);
(2)若g(a)>a2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.己知函数f(x)=xlnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)对?x≥1,f(x)≤m(x2-1)成立,求实数m的最小值;
(3)证明:1n$\root{4}{2n+1}$$<\sum_{i=1}^{n}$$\frac{i}{4{i}^{2}-1}$.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}中,Sn为其前n项和,且a4=5,S6=-39.
(1)求{an}的通项公式;
(2)求数列{an}的前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是R上的奇函数,且x>0时,f(x)=-x2+2x.
(1)求f(x)的解析式;
(2)在如图的直角坐标系中画出函数求f(x)的图象,并求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a=log3650.99、b=1.01365、c=0.99365,则a、b、c的大小关系为(  )
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

同步练习册答案