¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢ÙÒÑÖªÃüÌâp£º?x¡ÊR£¬tanx=2£»ÃüÌâq£º?x¡ÊR£¬x2-x+1¡Ý0£¬ÔòÃüÌâp¡ÄqÊÇÕæÃüÌ⣻
¢Ú¹ýµã£¨-1£¬2£©ÇÒÔÚxÖáºÍyÖáÉϵĽؾàÏàµÈµÄÖ±Ïß·½³ÌÊÇx+y-1=0£»
¢Ûº¯Êýf£¨x£©=lnx-2x-1ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»
¢ÜÏȽ«º¯ÊýµÄͼÏóÏò×óƽÒƸöµ¥Î»£¬ÔÙ½«Ðº¯ÊýµÄÖÜÆÚÀ©´óΪԭÀ´µÄÁ½±¶£¬ÔòËùµÃͼÏóµÄº¯Êý½âÎöʽΪy=sinx£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ    £®£¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅ¶¼ÌîÉÏ£©
¡¾´ð°¸¡¿·ÖÎö£º¢ÙÃüÌâp£º?x¡ÊR£¬tanx=2ΪÕæÃüÌ⣬ÃüÌâq£ºx2-x+1=£¨x-£©2+¡Ý0³ÉÁ¢
¢Ú¹ýµã£¨-1£¬2£©ÇÒÔÚxÖáºÍyÖáÉϵĽؾàÏàµÈ£¬·Ö£¨i£©µ±½Ø¾àa=b=0£¨ii£©µ±½Ø¾àa=b¡Ù0·Ö±ðÇó½âÖ±Ïß·½³Ì
¢ÛÖ»ÐèÅжϺ¯Êýy=-2x+1µÄͼÏóÓ뺯Êýy=lnxµÄͼÏóµÄ½»µãµÄ¸öÊý¼´¿É
¢Ü¸ù¾Ýº¯ÊýµÄͼÏóµÄƽÒÆ·¨Ôò¼°ÖÜÆڱ仯µÄ·¨Ôò¿ÉÇó
½â´ð£º½â£º¢ÙÃüÌâp£º?x¡ÊR£¬tanx=2ΪÕæÃüÌ⣬ÃüÌâq£º?x¡ÊR£¬x2-x+1=£¨x-£©2+¡Ý0ΪÕæÃüÌ⣬ÔòÃüÌâp¡ÄqÊÇÕæÃüÌ⣬¢ÙÕýÈ·
¢Ú¹ýµã£¨-1£¬2£©ÇÒÔÚxÖáºÍyÖáÉϵĽؾàÏàµÈ
£¨i£©µ±½Ø¾àa=b=0ʱ£¬Ö±Ïß·½³ÌΪy=-2x¼´2x+y=0
£¨ii£©µ±½Ø¾àa=b¡Ù0ʱ£¬¿ÉÉèÖ±Ïß·½³ÌΪ =1£¬ÓÉÖ±Ïß¹ý£¨-1£¬2£©¿ÉµÃa=1£¬ÔòÖ±Ïß·½³ÌΪx+y-1=0£¬
¹Ê¢Ú²»ÕýÈ·£®
¢Û¸ù¾Ýº¯ÊýµÄͼÏó¿ÉÖª£¬º¯Êýy=lnzÓ뺯Êýy=-2x+1µÄº¯Í¼ÏóÖ»ÓÐÒ»¸ö½»µã£¬¼´º¯Êýf£¨x£©=lnx+2x-1ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»¢ÛÕýÈ·
¢Ü½«º¯Êýy=sin£¨2x-£©µÄͼÏóÏò×óƽÒÆ ¸öµ¥Î»¿ÉµÃº¯Êýy=sin2xµÄͼÏó£¬ÔÙ½«Ðº¯ÊýµÄÖÜÆÚÀ©´óΪԭÀ´µÄÁ½±¶£¬¿ÉµÃͼÏóµÄº¯Êý½âÎöʽΪy=sinx£®¢ÜÕýÈ·
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÃüÌâÕæ¼ÙµÄÅжϣ¬½â´ð±¾ÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ»ù±¾ÖªÊ¶²¢ÄÜÁé»îÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢ÒÑÖªÊýÁÐA£ºa1£¬a2£¬¡­£¬an£¨0¡Üa1£¼a2£¼¡­£¼an£¬n¡Ý3£©¾ßÓÐÐÔÖÊP£º¶ÔÈÎÒâi£¬j£¨1¡Üi¡Üj¡Ün£©£¬aj+aiÓëaj-aiÁ½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»Ïî¡¢ÏÖ¸ø³öÒÔÏÂËĸöÃüÌ⣺¢ÙÊýÁÐ0£¬1£¬3¾ßÓÐÐÔÖÊP£»¢ÚÊýÁÐ0£¬2£¬4£¬6¾ßÓÐÐÔÖÊP£»¢ÛÈôÊýÁÐA¾ßÓÐÐÔÖÊP£¬Ôòa1=0£»¢ÜÈôÊýÁÐa1£¬a2£¬a3£¨0¡Üa1£¼a2£¼a3£©¾ßÓÐÐÔÖÊP£¬Ôòa1+a3=2a2£¬ÆäÖÐÕæÃüÌâÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåƽÃæÏòÁ¿Ö®¼äµÄÒ»ÖÖÔËËã¡°*¡±ÈçÏ£º¶ÔÈÎÒâµÄ
a
=(m£¬n)£¬
b
=(p£¬q)
£¬Áî
a
*
b
=mq-np
£®¸ø³öÒÔÏÂËĸöÃüÌ⣺£¨1£©Èô
a
Óë
b
¹²Ïߣ¬Ôò
a
*
b
=0
£»£¨2£©
a
*
b
=
b
*
a
£»£¨3£©¶ÔÈÎÒâµÄ¦Ë¡ÊR£¬ÓÐ(¦Ë
a
)*
b
=¦Ë(
a
*
b
)
£¨4£©(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
£®£¨×¢£ºÕâÀï
a
b
Ö¸
a
Óë
b
µÄÊýÁ¿»ý£©ÔòÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A¡¢£¨1£©£¨2£©£¨3£©
B¡¢£¨2£©£¨3£©£¨4£©
C¡¢£¨1£©£¨3£©£¨4£©
D¡¢£¨1£©£¨2£©£¨4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Õý·½ÌåABCD-A¡äB¡äC¡äD¡äµÄÀⳤΪ1£¬E¡¢F·Ö±ðÊÇÀâAA¡ä£¬CC¡äµÄÖе㣬¹ýÖ±ÏßEFµÄƽÃæ·Ö±ðÓëÀâBB¡ä¡¢DD¡ä½»ÓÚM¡¢N£¬ÉèBM=x£¬x¡Ê[0£¬1]£¬¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢ÙƽÃæMENF¡ÍƽÃæBDD¡äB¡ä£»
¢Úµ±ÇÒ½öµ±x=
12
ʱ£¬ËıßÐÎMENFµÄÃæ»ý×îС£»
¢ÛËıßÐÎMENFÖܳ¤l=f£¨x£©£¬x¡Ê0£¬1]Êǵ¥µ÷º¯Êý£»
¢ÜËÄÀâ׶C¡ä-MENFµÄÌå»ýv=h£¨x£©Îª³£º¯Êý£»
ÒÔÉÏÃüÌâÖÐÕæÃüÌâµÄÐòºÅΪ
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÕûÊýmÂú×ã²»µÈʽx-
1
2
¡Üm£¼x+
1
2
£¬x¡ÊR
£¬Ôò³ÆmΪxµÄ¡°Ç×ÃÜÕûÊý¡±£¬¼Ç×÷{x}£¬¼´{x}=m£¬ÒÑÖªº¯Êýf£¨x£©x-{x}£®¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢Ùº¯Êýy=f£¨x£©£¬x¡ÊRÊÇÖÜÆÚº¯ÊýÇÒÆä×îСÕýÖÜÆÚΪ1£»
¢Úº¯Êýy=f£¨x£©£¬x¡ÊRµÄͼÏó¹ØÓڵ㣨k£¬0£©£¬k¡ÊZÖÐÐĶԳƣ»
¢Ûº¯Êýy=f£¨x£©£¬x¡ÊRÔÚ[-
1
2
£¬
1
2
]
Éϵ¥µ÷µÝÔö£»
¢Ü·½³Ìf(x)=
1
2
sin(¦Ð•x)
ÔÚ[-2£¬2]ÉϹ²ÓÐ7¸ö²»ÏàµÈµÄʵÊý¸ù£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ü
¢Ù¢Ü
£®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢Ùº¯Êýf(x)=sinx+2xf¡ä(
¦Ð
3
)
£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬Áîa=log32£¬b=
1
2
£¬Ôòf£¨a£©£¼f£¨b£©
¢ÚÈôf(x+2)+
1
f(x)
=0
£¬Ôòº¯Êýy=f£¨x£©ÊÇÒÔ4ΪÖÜÆÚµÄÖÜÆÚº¯Êý£»
¢ÛÔÚÊýÁÐ{an}ÖУ¬a1=1£¬SnÊÇÆäÇ°nÏîºÍ£¬ÇÒÂú×ãSn+1=
1
2
Sn+2£¬ÔòÊýÁÐ{an}ÊǵȱÈÊýÁУ»
¢Üº¯Êýy=3x+3-x£¨x£¼0£©µÄ×îСֵΪ2£®
ÔòÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ú
¢Ù¢Ú
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸