精英家教网 > 高中数学 > 题目详情
18.已知集合 A={x|-2<x<3},B={x|x≥m}.若 A∩B=∅,则实数m的取值范围是(  )
A.(-∞,3]B.(-2,3]C.(-∞,-2)D.[3,+∞)

分析 根据集合的交集的运算性质计算即可.

解答 解:A={x|-2<x<3},B={x|x≥m},
若 A∩B=∅,
则实数m≥3,
故选:D.

点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)满足f(x)+f(-x)=2x2,且x∈[0,+∞)时f′(x)>2x恒成立,则不等式f(8-x)+16x<64+f(x)的解集为(  )
A.(4,+∞)B.(-∞,4)C.(8,+∞)D.(-∞,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P是△ABC内一点,且$5\overrightarrow{AP}-2\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow 0$,则△PAB的面积与△ABC的面积之比等于(  )
A.1:3B.2:3C.1:5D.2:5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.曲线$f(x)=\frac{sinx}{{\sqrt{2}sin(x+\frac{π}{4})}}-\frac{1}{2}$在点$M(\frac{π}{4},0)$处的切线的斜率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等,现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$ax2+(2a2+a-1)x+3,(a∈R)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若一个圆柱的轴截面是一个面积为4的正方形,则该圆柱的表面积为(  )
A.B.C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=log2(x2-3x+2)的定义域为(  )
A.(0,1)∪(2,+∞)B.(-∞,1)∪(2,+∞)C.(0,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正四面体的内切球与外接球的体积之比1:27.

查看答案和解析>>

同步练习册答案