精英家教网 > 高中数学 > 题目详情

( 本题满分14分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当2时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).

(Ⅰ)(Ⅱ)当车流密度(辆/千米)时,车流密度最大值为(辆/小时)

解析试题分析:(Ⅰ)由题意:设当    ---------1分
所以    -------------------4分
解得       -----------------6分
 当       ------------------7分
(Ⅱ)由(Ⅰ)可得  ------------8分
      ------------------10分
时,是增函数,当时候其最大值为;--11分
时,   ---------12分
时,其最大值为(辆/小时)       ----------13分
综上所述,当车流密度(辆/千米)时,车流密度最大值为(辆/小时)-14分
考点:函数的实际应用
点评:函数应用题要根据实际情况注意自变量函数值的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数其中.
(Ⅰ)证明:上的减函数;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
二次函数.
(1)若对任意恒成立,求实数的取值范围;
(2)讨论函数在区间上的单调性;
(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为定义在上的奇函数,当时, 
(1)证明函数是增函数(2)求在(-1,1)上的解析式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)计算:
(1)集合
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数经过点.
(1)求的值;(2)求在[0,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
(1)化简:
(2)已知的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中a,b为实常数)。
(Ⅰ)讨论函数的单调区间:
(Ⅱ)当时,函数有三个不同的零点,证明:
(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
(1)分别写出两种产品的收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

同步练习册答案