精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=2x3+x-5,求f(-2),f(4),f(b),f(b+h).

分析 由已知中函数f(x)=2x3+x-5,将x=-2,4,b,b+h代入可得答案.

解答 解:∵函数f(x)=2x3+x-5,
∴f(-2)=-25,
f(4)=127,
f(b)=2b3+b-5,
f(b+h)=2(b+h)3+(b+h)-5.

点评 本题考查的知识点是函数的值,难度不大,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设f(x)=|2x-1|,若关于x的函数g(x)=(1-t)f2(x)-f(x)+t有三个零点,则实数t的取值范围为(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2},1$)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知P(x,y)满足不等式$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,点A(1,1)则OP•cos∠AOP的取值范围是[2$\sqrt{2}$,$\frac{9\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在[-2,2]上的函数,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=2x-x2
(1)求x∈[-2,0)时,f(x)的表达式;
(2)画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的偶函数f(x)在(0,+∞)上为增函数,且f($\frac{1}{3}$)=0,求使不等式f(x+1)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果a,b,c∈R,那么“b2>4ac”是“方程ax2+bx+c=0有两个不等实根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.己知点O为坐标原点,△ABC为圆C1:(x-1)2+(y-$\sqrt{3}$)2=1的内接正三角形,则$\overrightarrow{OA}$•($\overrightarrow{OB}$$+\overrightarrow{OC}$)的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一个球与一个正三棱柱的三个侧面和两个底面都相切,这个球的面积为$\frac{32π}{3}$,棱柱的面积是多少?

查看答案和解析>>

同步练习册答案