精英家教网 > 高中数学 > 题目详情
16.为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人)
高校相关人数抽取人数
A151
B30x
C60y
(Ⅰ)求x,y;
(Ⅱ)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.

分析 (1)由题意先求出抽样比,再由分层抽样的性质求出x,y的值.
(2)从高校B、C抽取的人中选2人作专题发言,先求出基本事件总数,再求出这2人都来自高校C包含的基本事件个数,由此能求出这2人都来自高校C的概率.

解答 解:(1)由题意得抽样比f=$\frac{1}{15}$,
∴x=30×$\frac{1}{15}$=2,
y=60×$\frac{1}{15}$=4.
(2)从高校B、C抽取的人中选2人作专题发言,基本事件总数n=${C}_{6}^{2}$=15,
这2人都来自高校C包含的基本事件个数m=${C}_{4}^{2}$=6,
∴这2人都来自高校C的概率p=$\frac{m}{n}$=$\frac{6}{15}$=$\frac{2}{5}$.

点评 本题考查分层抽样的性质的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.正三棱锥的侧棱长为2$\sqrt{3}$,侧棱与底面所成的角为60°,则该棱锥的体积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出以下结论:
①函数$y=\frac{1}{x}$在其定义域内是减函数
②函数y=x2-2x的零点只有两个
③若函数f(2x)的定义域为[1,2],则函数f(2x)的定义域为[1,2]
④若函数f(x)=lg(x2+mx+1)(m∈R)的值域为R,则实数m的取值范围为(-∞,-2]∪[2,+∞),其中说法正确的序号是③④.(请把正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C满足sin(180°-A)=$\sqrt{2}$cos(B-90°),$\sqrt{3}$cosA=-$\sqrt{2}$cos(180°+B),求角A,B,C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列几个命题中真命题的序号是(2)(4).
(1)已知函数f(x)的定义域为[2,5),则f(2x-1)的定义域为[3,9);
(2)函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,也是奇函数;
(3)若f(x+1)为偶函数,则f(x+1)=f(-x-1);
(4)已知函数f(x)=x2+2ax+2在区间[-5,5]上是单调增函数,则实数a≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知c>0,设p:函数y=cx在R上递减;q:函数f(x)=x2-cx的最小值小于$-\frac{1}{16}$.如果“p或q”为真,且“p且q”为假,则实数c的取值范围为$(0,\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC中,BD⊥AC于D,E为BD上一点,且∠ABD=38°,∠CBD=68°,∠BCE=14°,∠DCE=8°,求∠DAE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{x-1}{a{e}^{x}}$-1(a∈R,a≠0).
(1)当a=1时,求函数f(x)在(1,f(1))处的切线;
(2)若函数f(x)没有零点,求实数a的取值范围
(3)若函数f(x)恰有一个零点,试写出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\frac{π}{4}<α<π,cos(α-\frac{π}{4})=\frac{3}{5}$,则tanα=(  )
A.7B.7或$\frac{1}{7}$C.-7D.$-\frac{1}{7}或7$

查看答案和解析>>

同步练习册答案