精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值。
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m ≠-2)可作曲线y=f(x)的三条切线,求实数m的范围。
解:(1)=3ax2+2bx-3,
依题意,f′(1)=f′(-1)=0,
解得a=1,b=0,
∴f(x)=x3-3x。
(2)∵f(x)=x3-3x,
∴f ′(x)=3x2-3=3(x+1)(x-1),
当-1<x<1时,f ′(x)<0,故f(x)在区间[-1,1]上为减函数,
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2,
∵对于区间[-1,1]上任意两个自变量的值x1,x2
都有|f(x1)-f(x2)|≤|fmax(x) -fmin(x)|,
∴ |f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4。
(3)f′(x)=3x2-3=3(x+1)(x-1),
∵曲线方程为y=x3-3x,
∴点A(1,m)不在曲线上,
设切点为M(x0,y0),则点M的坐标满足
,故切线的斜率为
整理得
∵过点A(1,m)可作曲线的三条切线,
,则
,得x0=0或x0=1,
∴g(x0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
∴函数的极值点为x0=0,x0=1,
∴关于x0方程有三个实根的充要条件是,解得-3<m<-2,
故所求的实数a的取值范围是-3<m<-2。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案