精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线经过点,且其中一焦点到一条渐近线的距离为1.

1)求双曲线的方程;

2)过点作两条相互垂直的直线分别交双曲线两点,求点到直线距离的最大值.

【答案】1 2

【解析】

1)将的坐标代入双曲线的方程,再由点到直线的距离公式,可得,解得,进而得到双曲线的方程;

2,直线的方程为,将代入中,整理得,根据可得的关系,从而将点到直线距离表示成关于的函数,再求最值。

1)∵双曲线过点,∴.

不妨设为右焦点,则到渐近线的距离

∴所求双曲线的方程为.

2)设,直线的方程为.

代入中,整理得.

①,②,

,∴

.

将①②代入③,得

.,∴

从而直线的方程为.

代入中,

判别式恒成立,

即为所求直线,该直线过定点

时,点到直线距离取最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:

打卡天数

17

18

19

20

21

男生人数

3

5

3

7

2

女生人数

3

5

5

7

3

1)根据上表数据,求该幼儿园男生平均打卡的天数;

2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别是,左、右两顶点分别是,弦ABCD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图).

的一条渐近线的一个方向向量,试求的两渐近线的夹角

,试求双曲线的方程;

的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l分别相交于点MN,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂预购软件服务,有如下两种方案:

方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;

方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.

(1)设日收费为元,每天软件服务的次数为,试写出两种方案中的函数关系式;

(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是矩形,交于点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆锥的顶点为A,底面的圆心为OBC是底面圆的一条直径,点DE在底面圆上,已知.

1)证明:

2)若二面角的大小为,求直线OC与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点分别为是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两直线分别交椭圆于两点.

1)求点坐标;

2)当直线经过点时,求直线的方程;

3)求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点GAB的中点,AB=BE=2.

)求证:EG∥平面ADF

)求二面角OEFC的正弦值;

)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点F为抛物线的焦点,焦点F到直线3x-4y+3=0的距离为d1,焦点F到抛物线C的准线的距离为d2,且

(1)抛物线C的标准方程;

(2)若在x轴上存在点M,过点M的直线l分别与抛物线C相交于P、Q两点,且为定值,求点M的坐标.

查看答案和解析>>

同步练习册答案