精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数y=f(x)在[0,+∞)上单调递减,函数f(x)的一个零点为
1
2
,则不等式f(log4x)<0的解集是______.
根据条件:可画图:
如图所示:
logx4
1
2
logx4
<-
1
2

解得:x∈(0,
1
2
)∪(2,+∞)
故答案为:(0,
1
2
)∪(2,+∞)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x-
1
2|x|

(1)设集合A={x|f(x)≤
15
4
}
,B={x|x2-6x+p<0},若A∩B≠∅,求实数p的取值范围;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个不同实数m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
ax+3,(x≤1)
1
x
+1,(x>1)
,满足对任意定义域中的x1,x2(x1≠x2),[f(x1)-f(x2)](x1-x2)<0总成立,则实数a的取值范围是(  )
A.(-∞,0)B.[-1,0)C.(-1,0)D.(-1,+∞),

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
a2x-(t-1)
ax
(a>0且a≠1)是定义域为R的奇函数
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0对一切x∈R恒成立的实数k的取值范围;
(3)若函数f(x)的反函数过点(
3
2
,1)
,是否存在正数m,且m≠1使函数g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值为0,若存在求出m的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
log2|x|
x
的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)证明f(x)为奇函数.
(2)证明f(x)在R上是减函数.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知偶函数f(x)在(-∞,0]上是增函数,且f(1)=0,则满足xf(x)<0的x的取值的范围为(  )
A.(-1,1)B.[-1,1]C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)
(  )
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数

查看答案和解析>>

同步练习册答案